
   

 

   

 

 

 

 

 

 

Abstract  

Contrails have significant impacts on radiative forcing, affecting Earth's climate. The present research 
proposes a deep-learning approach to predict radiative forcing induced by contrails using numerical 
weather prediction and air traffic data. The methodology involves temporal predictions with recurrent 
neural networks, short-term memory networks, and transformers, capturing temporal variability. 
Spatial predictions employ image-segmentation techniques based on convolutional neural networks 
to exploit spatial correlations in satellite images. Transfer learning enhances model performance using 
pre-trained models. The datasets include input parameters such as historical weather data, air traffic 
information, contrail and cloudiness data, and radiative forcing data as the output or target. These 
datasets provide essential information for the training, validation, and testing of the deep learning 
model. The combined temporal and spatial predictions offer comprehensive insights into contrail-
induced radiative forcing, contributing to climate change research and sustainable aviation practices. 

  

 

D3.1 Relevant data for 
deep-learning models 

 Deliverable ID:  D3.1 
 Project acronym: E-CONTRAIL 
 Grant: 101114795 
 Call: HORIZON-SESAR-2022-DES-ER-01 
 Topic: HORIZON-SESAR-2022-DES-ER-01-WA1-6 
 Consortium coordinator: KTH Royal Institute of Technology 
 Edition date:  14 September 2023 
 Edition:  01.00 
 Status: Draft 
 Classification: PU 

 



D3.1 RELEVANT DATA FOR DEEP-LEARNING MODELS     

 

Page | 2 
© –2023– SESAR 3 JU 

  
 

 

Authoring & approval 

Author(s) of the document 

Organisation name Date 

KTH Royal Institute of Technology 31/07/23 

 

Reviewed by 

Organisation name  Date 

KTH        08/09/2023 

BIRA        05/09/2023 

UC3M  07/09/2023 

RMI  07/09/2023 

 

Approved for submission to the SESAR 3 JU by1 

Organisation name Date 

KTH Royal Institute of Technology 08/09/2023 

BIRA 05/09/2023 

UC3M 07/09/2023 

RMI 07/09/2023 

 

Rejected by2 

Organisation name Date 
 

Document history 

Edition Date Status Company Author Justification 

00.01 31/07/2023 Initial Draft KTH Draft 

00.02 04/09/2023 Internal review KTH Sent for internal review 

01.00 14/09/2023 Submission UC3M  

 
Copyright Statement © (2023) – (UC3M, BIRA, KTH and RMI). All rights reserved. Licensed to SESAR 3 
Joint Undertaking under conditions. 

 

1 Representatives of all the beneficiaries involved in the project 

2 Representatives of the beneficiaries involved in the project 



D3.1 RELEVANT DATA FOR DEEP-LEARNING MODELS     

 

Page | 3 
© –2023– SESAR 3 JU 

  
 

E-CONTRAIL 
ARTIFICIAL NEURAL NETWORKS FOR THE PREDICTION OF CONTRAILS 
AND AVIATION INDUCED CLOUDINESS 

 

 

This document is part of a project that has received funding from the SESAR 3 Joint Undertaking under grant agreement No 
101114795  under the European Union’s Horizon Europe research and innovation programme. 

 

 

We provide now a high-level summary of the project E-CONTRAIL:  

Contrails and aviation-induced cloudiness effects on climate change show large uncertainties since 
they are subject to meteorological, regional, and seasonal variations. Indeed, under some specific 
circumstances, aircraft can generate anthropogenic cirrus with cooling. Thus, the need for research 
into contrails and aviation-induced cloudiness and its associated uncertainties to be considered in 
aviation climate mitigation actions becomes unquestionable.  

We will blend cutting-edge AI techniques (deep learning) and climate science with application to the 
aviation domain, aiming at closing (at least partially) the existing gap in terms of understanding 
aviation-induced climate impact.  

The overall purpose of E-CONTRAIL project is to develop artificial neural networks (leveraging remote 
sensing detection methods) for the prediction of the climate impact derived from contrails and 
aviation-induced cloudiness, contributing, thus, to a better understanding of the non-CO2 impact of 
aviation on global warming and reducing their associated uncertainties as essential steps towards 
green aviation.  

Specifically, the objectives of E-CONTRAIL are:  

• O-1 to develop remote sensing algorithms for the detection of contrails and aviation-
induced cloudiness.  
• O-2 to quantify the radiative forcing of ice clouds based on remote sensing and 
radiative transfer methods.  
• O-3 to use of deep learning architectures to generate AI models capable of predicting 
the radiative forcing of contrails based on data- archive numerical weather forecasts and 
historical traffic.  
• O-4 to assess the climate impact and develop a visualization tool in a dashboard. 
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1 Introduction 

Aviation contrails are cloud-like formations that occur when hot gases from aircraft engines mix 
with cold and humid air at higher altitudes. They consist primarily of ice crystals formed by the 
combination of water vapour in aircraft engine exhaust and low temperatures in the upper 
atmosphere. Impurities in the engine exhaust, such as sulphur compounds, act as nuclei for water 
droplets to freeze and create ice particles, forming the contrails. Depending on the atmospheric 
condition contrails can be visible for a short time or persist for hours, spreading and resembling natural 
cirrus clouds. It is essential to understand the effects of aviation-induced contrails on the atmosphere 
and its impacts on climate change. Numerous research being conducted around the world are 
continuously updating their knowledge about the effects of contrails on climate [1]–[5].  

During the day, contrails reflect the radiation to space, leading to a cooling effect on the Earth's 
surface. However, at night, they can trap infrared radiation, resulting in a warming impact instead. This 
radiative forcing can affect stability and temperature patterns, ultimately influencing weather 
conditions. The overall impact of contrails on radiative forcing depends on factors such as their 
number, how long they persist in the sky, and at what altitude they form. Although aviation contrails 
do play a role in altering the Earth's radiation budget, their significance may be more pronounced in 
regions with heavy air traffic [6], [7]. In circumstances where there is intense air traffic or favourable 
atmospheric conditions in an area, contrails have the potential to transform into cirrus-like clouds 
known as "contrail cirrus." Contrails formed by aircraft have an impact on climate compared to 
naturally occurring cirrus clouds, and their influence on warming the climate might be more significant 
[8], [9]. 

1.1 Deep-learning Models Data Sources 

Conceptual block #3 concerns the development of deep learning architectures for the prediction 
of the climate impact of contrails and aviation-induced cloudiness. See Figure 1. Deep-learning 
methods based on sequential processing and image-segmentation techniques will be developed and 
tested during this project. The methodology will follow two steps: temporal predictions and spatial 
predictions. The input data used for training and testing will entail data-archive numerical weather 
forecasts and historical aircraft traffic (as planned) from WP1 and 2. The output of this block will be 
radiative forcing of contrails images as an input for WP4. A complete description of the raw data and 
how it conforms to the FAIR principles will be included in the data management plan (DMP).  

1.2 Temporal Predictions 

The goal of this step is to model the temporal variability of parameters that are relevant to 
predicting the forcing of the contrails. The significance of this approach lies in mapping future states 
from previous states of the parameters, thereby exploiting the sequential (temporal) nature of the 
data. Relevant methods that will be employed in this project are recurrent neural networks (RNNs), 
such as long-short-term memory (LSTM) networks, and transformers, such as BERT (Bidirectional 
Encoder Representations from Transformers); introducing attention mechanisms to allow the model 
to query multiple hidden states relevant to predict the current state. RNNs take one input sequence 
element at a time and are widely applicable for short-term dependencies. For instance, RNNs have 
enjoyed application in determining temporal dynamics of low-order models of turbulence.  
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In contrast to RNNs and LSTMs, transformers are fed the entire sequential data (e.g., an entire 
sentence or time series), and exploit self-attention mechanisms in the encoder and decoder stages, 
which enable high parallelization with GPUs and reduced computational complexity. In the field of 
natural language processing, transformers are known to produce state-of-the-art results given their 
outstanding performance in classification tasks (e.g., machine translation), and recent studies 
demonstrate promising performance for regression tasks as well, such as time-series forecasting6, 
highly relevant for the methodology in this project. 

1.3 Spatial Predictions 

Image-segmentation techniques will be employed in this step of the methodology. The 
significance of this approach is to exploit spatial and channel cross-correlations in the satellite image 
data. This allows the spatial predictions to fully take advantage of the high-dimensional nature of the 
training set to learn relevant features with a low computational budget. Methods based on 
convolutional neural networks (CNN) will be used to extract shift-invariant features from the data. In 
previous studies, CNN-based methods have been shown to increase the lead time of thunderstorm 
prediction by using satellite image data and numerical weather forecasts. In particular, the features 
learned by these CNN models can potentially be reutilised for the task of predicting the contrails using 
transfer learning; thereby saving computational costs and dramatically accelerating the training 
process. Examples of these CNN-based models include ResNets (residual neural networks), U-Nets, and 
PSPNets (pyramid scene parsing networks), which pass and/or append features across layers to 
prevent vanishing gradients and improve 
the segmentation performance.  

We will also explore the use of depth-
wise separable convolutions, which 
separate the convolutional operation into 
channel and spatial convolutions, 
independently. The identification of 
contrails in this project will then be posed 
as an image segmentation problem, where 
pixels in the image with high (low) values 
correspond to a high (low) probability of 
contrails generated by the aircraft. We will 
also make use of deep generative models, 
such as generative adversarial networks 
(GANs) and variational autoencoders 
(VAEs), to produce super-resolution results 
from coarse data.  

The main idea is to exploit the principle 
of dimensionality reduction to up-sample 
the data, and the key strength of using 
generative models is thus to learn a 
compact representation of the image data 
instead of the data itself. GANs are 
composed of a generator network, which 
creates fake data from a random vector, 
and a discriminator network, which Figure 1: Methodological diagram Block #3 
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determines whether the data created by the generator is real or not. The model is trained until the 
discriminator no longer can distinguish whether the data generated is real or not. Similarly, VAEs are 
based on variational inference and regularization, and encode the input as a probability distribution 
over the latent space (often referred to as bottleneck), which is then sampled and decoded to yield 
the super-resolution output. Results from previous works on turbulent flow predictions will be of great 
relevance to this project. 
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2 Deep Learning Models 

Using deep learning models to predict the radiative forcing of contrails based on data-archive 
numerical weather forecasts, contrails and historical air traffic data is a promising approach. The 
combination of the following models can act as an effective method in addressing this kind of problem: 
a) Convolutional Neural Networks (CNNs), b) Long Short-Term Memory (LSTM) networks, c) Transfer 
Learning, d) Generative Adversarial Networks (GANs), and e) variational autoencoders (VAEs).  

• CNNs are well-suited for image-based data, and in this context, they can be used to 
process satellite images, which often provide valuable visual information about the 
presence and characteristics of contrails. The CNNs can extract features and patterns 
from these images, helping to analyse the spatial distribution and properties of 
contrails [10].  

• LSTM networks are a type of recurrent neural network (RNN) designed to handle 
sequential data. They are particularly useful when the temporal aspect is important, 
such as when analysing the persistence and evolution of contrails over time. LSTM 
networks can capture dependencies in historical traffic data and numerical weather 
forecasts to predict the radiative forcing of contrails at different time intervals [11], 
[12]. 

• Transfer learning involves using pre-trained models that have been trained on a large 
dataset for a different but related task. In the context of predicting contrail radiative 
forcing, you can leverage existing deep learning models that have been trained on 
similar climate or atmospheric data. Fine-tuning or retraining these models on your 
specific dataset can help boost performance and reduce the need for extensive 
training from scratch [10].  

• GANs can be employed for data augmentation and generation of synthetic contrail 
images. By training a GAN on the available contrail images, you can generate more 
diverse and realistic examples, which can help improve the robustness and 
generalization of your model [13].  

• VAEs are another type of generative model that can be used for data synthesis. Similar 
to GANs, VAEs can create realistic contrail images, and they can also be applied to 
generate latent representations for the contrail data, which may help in feature 
extraction and representation learning [14]. 

The overall workflow involves preprocessing various datasets, integrating them into a unified 
dataset, and then using a combination of CNNs, LSTM networks, and transfer learning to build a 
predictive model. GANs and VAEs can be used for data augmentation and synthesis to increase the 
diversity of the dataset. 
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3 Dataset 

The datasets are the foundation of successful deep-learning models for predicting the targets. 
They enable the models to learn from historical examples, generalize to new scenarios, and provide 
valuable insights into the complex interactions between datasets. Ensuring the quality and 
representativeness of the data is vital for building reliable and effective deep-learning models. The list 
of datasets proposed to be incorporated into this research are listed below: 

a) Numerical Weather Prediction 
b) Air Traffic Information 
c) Radiative Forcing (Target) 

 The selection of the dataset plays a significant role in deep learning models. It serves as the 
foundation for training the model and has a direct impact on the model's performance, generalization 
capabilities, and applicability to real-world scenarios. The key significances of selected datasets are 
discussed as follows: 

3.1 Numerical Weather Prediction 

Numerical Weather Prediction (NWP) data plays a crucial role in training deep-learning models for 
predicting radiative forcing induced by aviation contrails. Historical NWP data provides detailed 
information about past atmospheric conditions, which is essential for understanding the relationship 
between contrail formation and radiative forcing. NWP data provides a comprehensive view of 
atmospheric conditions, including maximum and minimum temperature, precipitation, wind 
properties, and atmospheric pressure, at various altitudes with different space and time intervals. This 
information is critical for identifying the conditions conducive to contrail formation and persistence 
[15]. By correlating historical NWP data with observed contrail occurrences, the deep learning model 
can learn to identify patterns and relationships between atmospheric conditions and the likelihood of 
contrail formation. The NWP data serves as the primary source for extracting relevant features that 
influence contrail formation and radiative forcing [16]. Historical NWP data can be used for model 
validation, where the deep learning model's predictions are compared to historical contrail 
observations. This helps assess the model's accuracy and reliability in capturing the relationship 
between atmospheric conditions and contrail-induced radiative forcing. 

NWP data spans a range of time intervals, allowing the model to capture the temporal variability 
of atmospheric conditions and contrail occurrences. This temporal aspect is crucial for understanding 
how radiative forcing changes with time and identifying long-term trends. By combining historical NWP 
data with corresponding radiative forcing data, a comprehensive training dataset can be constructed. 
This dataset consists of input features and target values (radiative forcing), which the deep learning 
model uses to learn the mapping between atmospheric conditions and radiative forcing. NWP data can 
also be utilized for transfer learning, where pre-trained models on atmospheric data (e.g., climate 
models) are fine-tuned for contrail-induced radiative forcing prediction. This approach leverages 
knowledge learned from related tasks to improve the deep learning model's performance on the 
specific prediction task [10]. Historical NWP data allows for sensitivity analysis, where the deep 
learning model can be used to explore how variations in specific atmospheric conditions impact 
contrail formation and radiative forcing. 

Incorporating historical NWP data into the deep learning model training process enhances the 
model's ability to understand the complex interactions between atmospheric conditions and aviation 
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contrail radiative forcing. It helps researchers gain insights into the environmental impact of contrails 
and contributes to the development of more accurate and comprehensive climate models for aviation 
emissions assessment. It is essential to consider the quality and spatial/temporal resolution of the 
NWP data, as well as the availability of corresponding contrail and radiative forcing observations for 
effective model training and validation [17]. 

3.2 Air Traffic Information 

The recent rise in air traffic and its related emissions and contrails has raised concern worldwide 
[19]. Air traffic information provides details about the flight paths, altitudes, and other characteristics 
of aircraft, which are essential for understanding contrail formation and their radiative impact. It also 
data provides insights into the density and distribution of flights in different regions and at various 
altitudes. Air traffic data includes altitude information for individual flights. The climate impact of air 
traffic emissions is usually calculated by combining this information with NWP data [20]. This allows 
the model to identify the altitude range where contrails are most likely to form and persist. Different 
aircraft types can produce varying contrail characteristics due to differences in engine type, fuel 
consumption, and emissions. Air traffic information provides data about the types of aircraft operating 
in the airspace, allowing the model to account for these variations.  

Contrail formation and persistence are influenced by factors such as atmospheric conditions and 
air traffic patterns. Air traffic data helps the model understand how long contrails are likely to persist 
based on the flight density and patterns. Air traffic information provides spatial and temporal 
distribution of flight activities. By combining this data with NWP data, the deep learning model can 
capture the spatiotemporal variations in contrail formation and radiative forcing. By integrating air 
traffic information data with numerical weather prediction data, deep learning models gain a more 
comprehensive understanding of the relationship between aviation activities, contrail formation, and 
radiative forcing. This will help in understanding the impacts of the contrails on the environment by 
providing accurate predictions. 

FlightRadar24 is a renowned flight tracking service that provides a piece of real-time flight 
information for many aircraft worldwide. The platform gathers data from various flight tracking system 
sources, including Automatic Dependent Surveillance-Broadcast (ADS-B) receivers. FlightRadar24 
provides real-time and historical datasets (Up to 3 years), which include the following information: 

• Real-time Aircraft Positions 

• Flight Identification 

• Flight Status 

• Aircraft Information 

• Flight Path and Route 

• Historical Data 

• Weather Conditions 

• Airport Information 

• Airspace Information 
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3.3 Radiative Forcing (Target) 

Radiative Forcing (RF) is a measure of Earth's energy balance caused by greenhouse gases. It 
represents the effect of incoming radiation at the top of the Earth's atmosphere. A positive RF indicates 
a warming effect, which signifies that energy being trapped in the Earth's atmosphere is more than the 
energy radiated back to space and vice versa for negative RF. The RF value is usually expressed in units 
of watts per square meter (W/m²). The impact of aviation on climate change is often described with 
the help of RF in any climate modelling setup. The aviation contrails act as a sensitive parameter for 
predicting RF which quantifies the additional warming or cooling effect caused by the presence of 
contrails in the atmosphere [21],[22].  

In the context of predicting climate change impacts induced by aviation contrails, RF data plays a 
crucial role as the target for building a deep learning model. The deep learning model is trained to 
learn the relationship between various input variables (numerical weather prediction data, air traffic 
data, and contrail information) and the corresponding RF values. The model aims to understand how 
different atmospheric conditions, air traffic patterns, and characteristics of contrails contribute to the 
radiative forcing effect. During the training process, the model is presented with a large dataset that 
includes the input variables and the corresponding RF values. By using RF data as the target, the model 
optimizes its internal parameters (weights and biases) to minimize the prediction errors between its 
output and the true RF values. This training process allows the model to effectively map the input 
variables to the target RF values and make accurate predictions for new and unseen data. 

By utilizing RF data as the target, the deep learning model can capture the complex and non-linear 
relationships between the input variables and radiative forcing, which may not be easily discernible 
through traditional analytical methods. It enables the model to gain insights into the complex 
interactions between atmospheric variables, air traffic, and contrails, leading to more accurate 
predictions of radiative forcing induced by aviation contrails. Overall, radiative forcing data as the 
target in deep learning model training is essential for developing accurate and reliable predictions of 
the environmental impact of aviation contrails. It provides valuable information for understanding the 
climate implications of contrails and contributes to the development of sustainable aviation practices 
and climate change mitigation strategies. 
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4 Training and Testing 

Training and testing are crucial steps in building, evaluating, and fine-tuning any deep-learning 
model. 

4.1 Training 

In the training phase, the deep learning model is exposed to a large dataset that includes NWP 
data, air traffic data, contrail data and corresponding radiative forcing values. The model learns to 
capture spatial and temporal patterns, correlations, and dependencies between NWP variables, 
contrails, and radiative forcing effects. The training process involves adjusting the model's internal 
parameters (weights and biases) through an optimization algorithm, such as stochastic gradient 
descent, to minimize the prediction errors between its predictions and the actual radiative forcing 
values in the training dataset. The dataset is typically divided into batches, and the model iteratively 
updates its parameters using backpropagation and gradient descent to improve its predictions. 

4.2 Validation 

During training, a portion of the training dataset is set aside as the validation dataset, which is 
not used for training the model. The model's performance is evaluated on the validation dataset at 
regular intervals during the training process. Evaluation metrics, such as mean squared error or mean 
absolute error, are used to assess the model's performance on the validation dataset. Validation helps 
in detecting overfitting and allows for early stopping when the model's performance on the validation 
set starts to degrade. 

4.3 Testing 

Once the model is trained and validated, it is evaluated on a separate dataset called the testing 
dataset. The testing dataset contains new, unseen data that the model has not encountered during 
training or validation. The model's predictions for radiative forcing induced by contrails and aviation-
induced cloudiness are compared against the actual radiative forcing values in the testing dataset to 
assess its performance on unseen data. Testing provides an estimate of the model's ability to 
generalize to real-world scenarios and unseen atmospheric conditions and air traffic patterns. 
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5 Prediction 

In the context of predicting the forcing of aviation contrails, temporal predictions aim to model 
the temporal variability of relevant parameters over time. This approach is significant because it allows 
the deep learning model to capture the dynamic nature of atmospheric conditions, air traffic patterns, 
and contrail formation, which vary over time. 

5.1 Temporal Predictions 

The use of RNNs and LSTM networks in this step is valuable due to their ability to handle sequential 
data and capture the dependencies over time. RNNs and LSTMs can process time-series data by 
maintaining a hidden state that carries information from one time step to the next, allowing the model 
to retain the memory of past states and use it to predict future states. This is especially useful when 
predicting the evolution of contrails and aviation-induced cloudiness, where the current state is 
influenced by previous atmospheric conditions and air traffic. Furthermore, the inclusion of 
transformers, such as Bidirectional Encoder Representations from Transformers (BERT), in this 
temporal prediction step demonstrates the use of state-of-the-art natural language processing 
techniques for time-series forecasting. Transformers utilize self-attention mechanisms, allowing the 
model to focus on relevant temporal dependencies and query multiple hidden states to predict the 
current state accurately. Their parallelization capability with GPUs and reduced computational 
complexity enable efficient processing of long sequences, making them suitable for handling large 
time-series datasets. 

By employing RNNs, LSTMs, and transformers, the deep learning model can effectively learn and 
exploit the temporal patterns and dependencies in the data, enhancing the accuracy of temporal 
predictions. This approach allows the model to map future states from past states, making it capable 
of making predictions for multiple time steps ahead. Overall, temporal predictions using deep learning 
methods contribute to a comprehensive understanding of the temporal dynamics of contrail 
formation, cloudiness, and radiative forcing induced by aviation activities. The results obtained from 
this step can provide valuable insights into how contrails and aviation impact the Earth's atmosphere 
over time, supporting climate change research, aviation emissions assessment, and the development 
of sustainable aviation practices. 

5.2 Spatial Predictions 

The use of image-segmentation techniques, mainly based on convolutional neural networks 
(CNNs), in the methodology has several significant advantages for predicting contrails and aviation-
induced cloudiness.  

• Exploiting Spatial Correlations: Image-segmentation techniques leverage spatial and channel 
cross-correlations in the satellite image data. This enables the model to capture spatial 
patterns and dependencies between pixels, which are crucial for identifying and delineating 
contrails and aviation-induced cloudiness accurately. 

• High-Dimensional Data Processing: Satellite images are high-dimensional data with a large 
number of pixels and channels. CNN-based methods are well-suited for processing such data 
due to their ability to learn hierarchical and shift-invariant features from images efficiently. 

• Transfer Learning: CNN-based models trained on related tasks, such as predicting 
thunderstorms from satellite images, can be repurposed for predicting contrails using transfer 
learning. By leveraging pre-trained CNN models, the approach saves computational costs and 
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speeds up the training process, as the model can use the knowledge learned from previous 
tasks. 

• Improved Segmentation Performance: CNN-based models like ResNets, U-Nets, and PSPNets 
are designed to handle vanishing gradients and improve segmentation performance. These 
architectures allow the model to pass and append features across layers, enabling better 
feature representation and more accurate segmentation of contrails in satellite images. 

• Depth-wise Separable Convolutions: Exploring the use of depth-wise separable convolutions 
further enhances the efficiency of the model by reducing the number of computations. This 
separation of convolution operations into channel and spatial convolutions helps optimize the 
model's performance and resource utilization. 

• Image Segmentation for Contrail Identification: By treating contrail identification as an image 
segmentation problem, the model can output probability maps, where pixels with high values 
correspond to a high probability of contrails generated by aircraft. This probabilistic approach 
allows for better uncertainty estimation and quantification of contrail presence. 

• Super-Resolution with Generative Models: The use of deep generative models like GANs and 
VAEs for super-resolution results in producing high-resolution images from coarse data. This 
capability is valuable for enhancing the resolution of satellite images, enabling better 
identification and characterization of contrails and aviation-induced cloudiness. 

• Transfer from Turbulent Flow Predictions: Insights and methodologies from previous works on 
turbulent flow predictions are relevant and can be adapted to enhance the predictive 
capabilities of the model for contrail-induced radiative forcing. 
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6 Summary and Open Questions 

The research aims to predict radiative forcing induced by contrails and aviation-induced cloudiness 
using deep learning models. The approach involves temporal predictions, utilizing RNNs, LSTM 
networks, and BERT to capture the temporal variability of relevant parameters over time. This allows 
the model to understand how atmospheric conditions, air traffic patterns, and contrail formation 
evolve and influence radiative forcing. In the spatial prediction aspect, image-segmentation techniques 
based on CNNs are employed to exploit spatial correlations in satellite image data. The CNNs can 
efficiently process high-dimensional data and extract shift-invariant features, enabling accurate 
identification of contrails and aviation-induced cloudiness. Transfer learning from pre-trained models 
further enhances segmentation performance, saves computational costs, and speeds up training. 

The datasets used in the deep learning model are critical for training and testing. NWP data provide 
information about atmospheric conditions and contrail persistence, while air traffic data gives insights 
into flight paths and altitudes affecting contrail formation. Contrails and aviation-induced cloudiness 
data offer characteristics and spatial distribution of contrails, aiding in understanding their radiative 
effects. The target data, radiative forcing, quantify changes in the Earth's energy balance due to various 
factors, including contrails. By integrating these datasets, the deep learning model learns the 
relationships between atmospheric conditions, air traffic, and radiative forcing. Training and testing 
phases ensure the model's accuracy and generalization to unseen data. The combination of temporal 
and spatial predictions using deep learning facilitates a comprehensive understanding of contrail-
induced radiative forcing, supporting climate research and sustainable aviation practices. 

6.1 Open Questions 

Nevertheless, there are still some open questions that we need to solve as we deep into the 
implementation activities of the project. These open questions, which we will be addressing in the 
upcoming months, are: 

➢ What is the boundary selected for the study? 
➢ Which numerical weather prediction model is to be considered? 
➢ What are the weather parameters considered from the NWP model? 
➢ What are the criteria for the selection of weather parameters? 
➢ How to address the variation in spatiotemporal aspects of datasets from different sources? 
➢ Which are the relevant air traffic information parameters? 
➢ Is upscaling/downscaling required to unify the datasets to a common grid? 
➢ Is sensitivity analysis required for the selection of optimum input parameters? 
➢ Is the timescale considered sufficient to address seasonal/climatic changes? 



D3.1 RELEVANT DATA FOR DEEP-LEARNING MODELS     

 

Page | 16 
© –2023– SESAR 3 JU 

  
 

7 References 

[1] V. Ballal, O. Cavalett, F. Cherubini, and M. D. B. Watanabe, “Climate change impacts of e-fuels 
for aviation in Europe under present-day conditions and future policy scenarios,” Fuel, vol. 338, 
p. 127316, Apr. 2023, doi: 10.1016/j.fuel.2022.127316. 

[2] M. Jarošová and M. Pajdlhauser, “Aviation and Climate Change,” Transp. Res. Procedia, vol. 65, 
pp. 216–221, Jan. 2022, doi: 10.1016/j.trpro.2022.11.025. 

[3] R. Chevallier, M. Shapiro, Z. Engberg, M. Soler, and D. Delahaye, “Linear Contrails Detection, 
Tracking and Matching with Aircraft Using Geostationary Satellite and Air Traffic Data,” 
Aerospace, vol. 10, no. 7, Art. no. 7, Jul. 2023, doi: 10.3390/aerospace10070578. 

[4] J. P. Hoffman, T. F. Rahmes, A. J. Wimmers, and W. F. Feltz, “The Application of a Convolutional 
Neural Network for the Detection of Contrails in Satellite Imagery,” Remote Sens., vol. 15, no. 11, 
Art. no. 11, Jan. 2023, doi: 10.3390/rs15112854. 

[5] L. Kulik, “Satellite-based detection of contrails using deep learning,” Thesis, Massachusetts 
Institute of Technology, 2019. Accessed: Aug. 02, 2023. [Online]. Available: 
https://dspace.mit.edu/handle/1721.1/124179 

[6] Y. Y. Lai et al., “Analysing the opportunities and challenges for mitigating the climate impact of 
aviation: A narrative review,” Renew. Sustain. Energy Rev., vol. 156, p. 111972, Mar. 2022, doi: 
10.1016/j.rser.2021.111972. 

[7] S. Gössling and A. Humpe, “The global scale, distribution and growth of aviation: Implications for 
climate change,” Glob. Environ. Change, vol. 65, p. 102194, Nov. 2020, doi: 
10.1016/j.gloenvcha.2020.102194. 

[8] U. Burkhardt and B. Kärcher, “Global radiative forcing from contrail cirrus,” Nat. Clim. Change, 
vol. 1, no. 1, Art. no. 1, Apr. 2011, doi: 10.1038/nclimate1068. 

[9] “Process‐based simulation of contrail cirrus in a global climate model - Burkhardt - 2009 - Journal 
of Geophysical Research: Atmospheres - Wiley Online Library.” 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008JD011491 (accessed Aug. 04, 
2023). 

[10] A. M. S. Kheir, A. Elnashar, A. Mosad, and A. Govind, “An improved deep learning procedure for 
statistical downscaling of climate data,” Heliyon, vol. 9, no. 7, p. e18200, Jul. 2023, doi: 
10.1016/j.heliyon.2023.e18200. 

[11] K. Venkatachalam, P. Trojovský, D. Pamucar, N. Bacanin, and V. Simic, “DWFH: An improved data-
driven deep weather forecasting hybrid model using Transductive Long Short Term Memory (T-
LSTM),” Expert Syst. Appl., vol. 213, p. 119270, Mar. 2023, doi: 10.1016/j.eswa.2022.119270. 

[12] X. Yuan, C. Chen, X. Lei, Y. Yuan, and R. Muhammad Adnan, “Monthly runoff forecasting based 
on LSTM–ALO model,” Stoch. Environ. Res. Risk Assess., vol. 32, no. 8, pp. 2199–2212, 2018, doi: 
10.1007/s00477-018-1560-y. 

[13] A. Huang, R. Shen, W. Di, and H. Han, “A methodology to reconstruct LAI time series data based 
on generative adversarial network and improved Savitzky-Golay filter,” Int. J. Appl. Earth Obs. 
Geoinformation, vol. 105, p. 102633, Dec. 2021, doi: 10.1016/j.jag.2021.102633. 

[14] Y.-F. Zhang and P. J. Thorburn, “A deep surrogate model with spatio-temporal awareness for 
water quality sensor measurement,” Expert Syst. Appl., vol. 200, p. 116914, Aug. 2022, doi: 
10.1016/j.eswa.2022.116914. 

[15] U. Schumann, “Formation, properties and climatic effects of contrails,” Comptes Rendus Phys., 
vol. 6, no. 4, pp. 549–565, May 2005, doi: 10.1016/j.crhy.2005.05.002. 

[16] G. Love, A. Soares, and H. Püempel, “Climate Change, Climate Variability and Transportation,” 
Procedia Environ. Sci., vol. 1, pp. 130–145, Jan. 2010, doi: 10.1016/j.proenv.2010.09.010. 



D3.1 RELEVANT DATA FOR DEEP-LEARNING MODELS     

 

Page | 17 
© –2023– SESAR 3 JU 

  
 

[17] S. R. Dorling, R. J. Foxall, D. P. Mandic, and G. C. Cawley, “Maximum likelihood cost functions for 
neural network models of air quality data,” Atmos. Environ., vol. 37, no. 24, pp. 3435–3443, 2003, 
doi: 10.1016/S1352-2310(03)00323-6. 

[18] K. Gierens, S. Matthes, and S. Rohs, “How Well Can Persistent Contrails Be Predicted?,” 
Aerospace, vol. 7, no. 12, Art. no. 12, Dec. 2020, doi: 10.3390/aerospace7120169. 

[19] D. P. Bajgai and K. L. Shrestha, “Evaluation of aircraft emission at Tribhuvan international airport 
and its contribution to air quality in Kathmandu, Nepal,” Atmospheric Environ. X, vol. 17, p. 
100204, Jan. 2023, doi: 10.1016/j.aeaoa.2023.100204. 

[20] K. Dahlmann, V. Grewe, C. Frömming, and U. Burkhardt, “Can we reliably assess climate 
mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes?,” 
Transp. Res. Part Transp. Environ., vol. 46, pp. 40–55, Jul. 2016, doi: 10.1016/j.trd.2016.03.006. 

[21] C. Frömming, M. Ponater, U. Burkhardt, A. Stenke, S. Pechtl, and R. Sausen, “Sensitivity of contrail 
coverage and contrail radiative forcing to selected key parameters,” Atmos. Environ., vol. 45, no. 
7, pp. 1483–1490, Mar. 2011, doi: 10.1016/j.atmosenv.2010.11.033. 

[22] J. D. Scheelhaase et al., “How to best address aviation’s full climate impact from an economic 
policy point of view? – Main results from AviClim research project,” Transp. Res. Part Transp. 
Environ., vol. 45, pp. 112–125, Jun. 2016, doi: 10.1016/j.trd.2015.09.002. 

 



D3.1 RELEVANT DATA FOR DEEP-LEARNING MODELS     

 

Page | 18 
© –2023– SESAR 3 JU 

  
 

8 List of acronyms  

Acronym Description 

ADS-B Automatic Dependent Surveillance-Broadcast 

BERT Bidirectional Encoder Representations from Transformers 

CNN Convolutional neural networks 

DMP Data Management Plan 

GANs Generative adversarial networks 

LSTM Long-short-term memory 

NWP Numerical Weather Prediction 

PSPNets Pyramid scene parsing networks 

ResNets residual neural networks 

RF Radiative Forcing 

RNNs recurrent neural networks 

VAEs Variational autoencoders 

Table 1: List of acronyms 
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