
   

 

   

 

 

 

 

 

Abstract  

This document aims to provide a comprehensive overview of the approach followed for the task of 
contrail detection and the study of its evolution into Aviation Induced Cloudiness (AIC). It encompasses 
an in-depth review of the methodology employed, including the use of various sources of data, models 
and image processing techniques. The primary approach for contrail detection involves training Neural 
Networks with satellite image data, attempting to learn the underlying patterns in the shape, motion 
and brightness temperature of these features. The document distinguishes between contrail detection 
models that yielded successful outcomes and those that encountered challenges, explaining the 
workaround solutions devised to address these issues and the additional processing needed to achieve 
the best possible results. Additionally, the document introduces a novel methodology for simulating the 
formation and evolution of contrails, based in the physics underlying the phenomenon. This model 
revolves around particle transport in the atmosphere and the temporal evolution of particle size, to 
simulate the transition of these linear features into AIC. It includes an evaluation of preliminary test 
cases by comparing the simulated scenarios with real-world observations.   
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E-CONTRAIL 
ARTIFICIAL NEURAL NETWORKS FOR THE PREDICTION OF CONTRAILS 
AND AVIATION INDUCED CLOUDINESS 

 

This document is part of a project that has received funding from the SESAR 3 Joint Undertaking under grant agreement No 
[Click or tap here to enter Grant No.] under European Union’s Horizon Europe research and innovation programme. 

 

We provide now a high-level summary of the project E-CONTRAIL:  

Contrails and aviation-induced cloudiness effects on climate change show large uncertainties since 
they are subject to meteorological, regional, and seasonal variations. Indeed, under some specific 
circumstances, aircraft can generate anthropogenic cirrus with cooling. Thus, the need for research 
into contrails and aviation-induced cloudiness and its associated uncertainties to be considered in 
aviation climate mitigation actions becomes unquestionable.  

We will blend cutting-edge AI techniques (deep learning) and climate science with application to the 
aviation domain, aiming at closing (at least partially) the existing gap in terms of understanding 
aviation-induced climate impact.  

The overall purpose of E-CONTRAIL project is to develop artificial neural networks (leveraging remote 
sensing detection methods) for the prediction of the climate impact derived from contrails and 
aviation-induced cloudiness, contributing, thus, to a better understanding of the non-CO2 impact of 
aviation on global warming and reducing their associated uncertainties as essential steps towards 
green aviation.  

Specifically, the objectives of E-CONTRAIL are:  

❖ O-1 to develop remote sensing algorithms for the detection of contrails and aviation-
induced cloudiness.  
❖ O-2 to quantify the radiative forcing of ice clouds based on remote sensing and 
radiative transfer methods.  
❖ O-3 to use of deep learning architectures to generate AI models capable of predicting 
the radiative forcing of contrails based on data- archive numerical weather forecasts and 
historical traffic.  
❖ O-4 to assess the climate impact and develop a visualization tool in a dashboard. 
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Executive Summary 

The E-CONTRAIL project aims to develop artificial neural networks that utilize remote sensing 
detection methods to predict the climate impact of contrails and aviation-induced cloudiness. This 
deliverable is specifically aligned with E-CONTRAIL's Objective 1 (O-1), which focuses on creating 
remote sensing algorithms for detecting contrails and aviation-induced cloudiness.  

Purpose and Goals: The primary goal of this deliverable is to present the methodology for 
implementing a model that identifies and tracks contrails using high temporal resolution data sources. 
Additionally, it introduces a physics-based approach for simulating the transition of contrails into 
cloudiness, explaining how this simulation will help forecast future contrail locations based on real-
world observations.  

Methodology: The methodology section details the techniques used to accurately identify regions of 
contrail formation in satellite imagery. It explores various model architectures and configurations, 
along with preprocessing and post-processing techniques to optimize results by combining expert 
knowledge with model detections. The models were validated using original GOES-16 data and 
extrapolated to European satellite data from MSG/SEVIRI experiments. Furthermore, this section 
examines the fundamental equations governing ice crystal transportation by wind and the 
thermophysical characteristics of contrails. A novel term addressing gravity's impact on contrail 
dissipation is introduced. A model simulating the evolution of contrails into non-linear clouds is also 
presented.  

Results and conclusions: This deliverable has successfully developed a model capable of detecting 
contrails in satellite imagery and another for characterizing the evolution of contrails into aviation-
induced cloudiness. A nearly 10% improvement in the Dice score for contrail detection models was 
achieved. Necessary pre- and post-processing steps for optimal performance were outlined. The 
models were demonstrated to be applicable to European data, though further quantitative validation 
with MSG/SEVIRI images is pending. Performance is expected to improve with the availability of MTG 
data. 

The physics-driven contrail simulation model implemented a novel transport equation to address slip 
mechanisms, simulating the advection-diffusion of ice particles. Persistent contrail propagation is 
governed by a comprehensive advection-diffusion equation, essential for precise simulations and 
radiative forcing assessments. While the model requires further refinement, it shows reasonable 
consistency with methods like CoCiP. 

Future enhancements will focus on: 

1. Physics Representation: Updating the model to incorporate additional physical processes. 
2. Large-Scale Simulation: Reducing computational time for tracking contrails over extensive 

areas such as Europe, improving algorithm efficiency. 

This deliverable lays the groundwork for future advancements in understanding and mitigating 
aviation's climate impact through improved detection and simulation techniques. 
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1 Introduction 

The concern about climate change has escalated in recent years as we are increasingly experiencing 
noticeable and impactful consequences in our everyday lives. As these effects become more 
pronounced and widespread, the urgency to address climate change grows stronger. Aviation emerges 
as one of the primary contributors to climate change, not only due to Carbon Dioxide (CO2) and 
Nitrogen Oxides (NOx) emissions but also because of other factors, such as the generation of 
condensation trails, commonly referred to as contrails. These are artificial clouds, formed because of 
aircraft emissions. Even the exact impact of contrails on global warming is still being studied, it is 
certain that they affect the climate. A contrail forms when an aircraft flies through an area of the 
atmosphere with very low temperatures and high humidity. The water vapour emitted by the aircraft 
engines undergoes a process of rapid freezing into tiny ice crystals due to the low temperatures, which 
are typically around -40 degrees Celsius [1]. These ice crystals serve as nuclei around which more water 
vapour condenses, forming a visible cloud-like trail behind the aircraft. Contrails frequently scatter and 
merge as they are carried by wind, gradually developing into a layer of cloud cover. When this contrail 
formations and subsequent cloudiness persist over extended durations, they entrap the longwave 
infrared radiation seeking to exit Earth, consequently altering temperatures in the lower troposphere 
[2].  

To mitigate this warming effect, an effective solution involves identifying regions where weather 
conditions meet the criteria for potential contrail formation, named Ice Supersaturated Regions (ISSR). 
Upon identification, aircraft can alter their flight paths to avoid traversing these areas.  

Several approaches have been investigated in research, mainly using satellite imagery to identify 
contrails [3], [4], [5] by their characteristic linear form and cooler temperature relative to the 
surrounding air, making them discernible in particular infrared wavelengths. While some methods 
have demonstrated effectiveness under specific conditions, they frequently encounter constraints and 
fail to generalize for application across varied scenarios or with alternative data sources. Consequently, 
we have examined these limitations and propose a method that partially circumvents some of these 
challenges, offering a valuable tool and serving as a foundation for future work. 

1.1 Scope of the Deliverable 

The main goal of this deliverable is to present the methodology considered to implement a model 
which identifies and tracks contrails using data source with a high temporal resolution. Moreover, it 
aims to introduce our physics-based approach for simulating the transition of contrails into cloudiness, 
explaining how this simulation will form the basis for understanding and forecasting future contrail 
locations derived from the model's detections in real-world observations. 

1.2 State of the art critique 

The radiative effects of contrails, their properties and dynamics as well as techniques for their 
detection and the identification of potential formation areas, have been thoroughly investigated in the 
scientific literature over the past few decades. Contrails were first observed in 1919, when aircrafts 
reached high enough altitudes to meet the required weather conditions for water vapour to freeze 
into ice crystals and have since then been an object of study. In this section we will be providing a short 
overview of the existing work and research gaps bot in the contrail detection modelling as well as in 
the contrail simulation area. 
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1.2.1 Studies on contrail detection 

When addressing the task of detecting and segmenting contrails in satellite imagery, most approaches 
rely on data from geostationary satellites. This preference arises because they offer significantly higher 
temporal resolution compared to low and medium earth orbit satellites. The extended revisit periods 
of the latter, often surpassing the lifespan of these clouds, make tracking impractical. However, the 
limited spatial resolution of geostationary satellite images often presents challenges in identifying the 
contrails within the visible spectrum channels.  

Due to the inability to observe contrails in visible channel images, early contrail detection methods 
relied on passive remote sensing techniques, taking advantage of the lower temperature of ice crystals 
in specific thermal infrared bands for identification. For instance, owing to their smaller ice crystal sizes 
[6], contrails often display higher transmissivity within bands centred around wavelengths of 10.3 to 
11.3 µm rather than bands around 11.5 to 12.5 µm, resulting in a more prominent appearance in the 
Brightness Temperature Difference (BTD) image between these two bands (see Figure 1). Building on 
this understanding, various studies attempted contrail detection using these BTD images.  

 

Figure 1. Temperature difference between channels 4 (range of wavelengths between 10.3 and 11.3 µm) and 
5 (between 11.5 and 12.5 µm) of AVHRR/2 sensor onboard NOAA-12, 4 May 1995, 07:43 UT. [3] 

For instance, Pratt (1991) proposed employing the Hough Transform to detect contrails based on their 
distinct linear shape [7]. While these and similar approaches performed effectively in certain scenarios, 
they also yielded numerous false detections and necessitated manual post-processing adjustments on 
a case-by-case basis. For a long time, the state of the art of the contrail detection model has been the 
Contrail Detection Algorithm (CDA) proposed by Mannstein et al. (1999) in [3].  Their scheme provided 
a whole new pipeline that utilized different image processing operations, line detection kernels and 
brightness temperature thresholds to be able to handle all case scenarios and avoid misdetections 
providing final contrail masks like the one shown in Figure 2. 
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Figure 2. Stacked contrail masks of 1996 indicate frequency and predominant bearing of air traffic (derived 
from 357 AVHRR noon-passages) [3]. 

In parallel with these methods, initial efforts to address this issue using Neural Networks have surfaced 
[8]. However, achieving accurate contrail detection results and developing a broadly applicable 
algorithm proved challenging due to the absence of a comprehensive dataset encompassing the full 
range of contrail variability. Over the past few decades, a growing number of studies have emerged 
focusing on contrail detection methods using Neural Networks. For instance, Zhang et al. (2018) 
employed a Convolutional Neural Network (CNN), known as ContrailMod [4] to identify contrails in a 
dataset of Himawari-8 BTD images spanning 12.3 to 10.35 µm. The network consists of several 
convolutional operations followed by three fully connected layers in its architecture (refer to Figure 3) 
ultimately producing a one-pixel width segment for each contrail. However, unlike most of these 
authors, they have not made their datasets with the labelled contrails publicly available, so no other 
models have been developed on this data. 

 

Figure 3. The illustration of (a) the ContrailMod architecture and (b) example of 8 × 8 sub-grid boxes with 
detected contrails [4].  
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The first major publicly accessible dataset was the Landsat Contrails Dataset [9], offering a total of 
4,289 spectral images, primarily from 2018, within the viewable range of the GOES-16 satellite. 
Although Landsat-8's 16-day revisit cycle results in temporal sparsity, its high spatial resolution allows 
for precise pixel-level contrail labelling. Various studies have published the outcomes of different 
neural networks trained on this dataset. For example, in [10] several popular segmentation models 
were benchmarked, including U-Net [11], PSPNet [12], DeepLab V3 [13], and DeepLab V3+ [14], using 
different combinations of loss functions and encoder backbones.  

 

Figure 4. : IoU scores of segmentation models trained with different backbone architecture proposed in [10] 

The combination of the U-Net architecture with the Xception 71 backbone achieved the highest 
Intersection over Union (IoU) of 0.4395. Despite the relatively low IoU, the model produced 
satisfactory contrail masks. This lower IoU is attributed to the thin and elongated shape of the labels, 
making the IoU calculation highly sensitive to minor prediction deviations. 

The primary issue with this dataset is the insufficient number of labels, which limits the ability to 
capture enough variability. Additionally, the low temporal resolution of the images hinders the 
subsequent extension of models for contrail tracking or studying the evolution into AIC. 

To deal with the limitations of Landsat-8 Dataset, in 2023 the first comprehensive dataset of labelled 
geostationary satellite images was released to the public. The OpenContrails dataset contains a 
significant number of images, totalling 22,410, and includes temporal context for each image, 
providing both preceding and subsequent snapshots. Subsequently, in May 2023, a contrail detection 
competition was launched by Google Research [12], inviting experts to develop models trained on this 
data to achieve optimal performance results based on the Dice Score Metric given by 

𝐷𝑆 =
2 ⋅ |𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

where X is the entire set of predicted contrail pixels for all observations in the test data and Y is the 
ground truth set of all contrail pixels in the test data. 

As a result, a multitude of attempts have emerged to train Neural Networks for contrail detection using 
this dataset, predominantly utilizing the well-known semantic segmentation architecture U-Net 
combined with various backbones, loss functions, and hyperparameter configurations. The top-
performing solution in the competition employed a U-Net network with a MaxViT [13] encoder and 
was trained using binary cross-entropy loss. However, its superiority in performance was largely 
attributed to the identification of a 0.5-pixel shift in the labels, enabling appropriate corrections during 
training. 

While only one image in the sequence includes contrail labels, some participants have endeavoured to 
incorporate the temporal dimension by testing window transformers like Video Swin Transformers 
[14] or 3D CNNs [15]. However, they reported suboptimal performance due to significant changes 
between consecutive frames, with a 15-minute difference. Despite this, some suggested leveraging 
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temporal mixing layers and Long Short-Term Memory (LSTM) [16] modules. Nonetheless, the observed 
performance improvement was marginal, approximately 0.01%, which did not justify the additional 
computational time required to process the entire image sequence as input. 

Despite the existence of promising solutions, there remains a significant research gap in this domain. 
This is because numerous architectures beyond U-Net based models warrant exploration, and 
alternative methods for integrating temporal information into networks could potentially yield 
satisfactory performance if an innovative approach is identified. 

1.2.2 Studies on pyshic-driven contrail simulation 

Contrail simulation models span from detailed small-scale models to comprehensive large-scale 
climate models, each with varying focuses and complexities. Initially, we review key models and their 
distinguishing features, with a particular emphasis on the specialized Contrail Cirrus Prediction (CoCiP) 
model and Ames Contrail Simulation Model (ACSM).  

Small-scale models focus on ice nucleation, growth, and sublimation within contrails. For example, 
Lewellen [16a] utilized a Large Eddy Simulation (LES) model to examine contrail formation and 
persistence under varying atmospheric conditions. Detailed microphysical schemes, such as those by 
Kärcher and Lohmann [16b] are often embedded within larger models to enhance their accuracy in 
simulating contrail microphysics. 

Large-scale models, such as global climate models incorporate contrails to evaluate their climate 
impact, typically using simplified parameterizations. Burkhardt and Kärcher [16c] developed such a 
parameterization to study the radiative forcing of contrail cirrus on a global scale.  

CoCiP model is a specialized large-scale contrail model with its dedicated focus on predicting the 
formation, evolution, and climate impact of contrail cirrus. It incorporates detailed microphysical 
processes, integrates real-time aviation data, and operates at high temporal and spatial resolutions. 
Schumann [16d] demonstrated CoCiP's capability to predict global contrail distributions and their 
radiative impacts. 

ACSM (Jinhua Li, 2023) is a more recent specialized large-scale contrail model which shares many 
similarities with CoCiP w.r.t. contrail formation, evolution and climate impact of contrail cirrus. 
Nevertheless, there are some distinctive features as outlined in (Jinhua Li, 2023), such as calculating 
contrails by aircraft occupancy in a gridded airspace rather than for individual aircraft trajectories, as 
well as the approach to model the cross-sectional area of contrails.  

Here, we have developed a novel specialized large-scale model to simulate the temporal evolution of 
contrails, leveraging a new transport equation. This model integrates foundational elements from 
established frameworks such as CoCiP and ACSM particularly in addressing the microphysics of contrail 
formation and growth. The key innovation lies in the use of a new advection-diffusion equation, which 
enhances the accuracy of simulating contrail evolution. Additionally, the model incorporates a neural 
network scheme to reconstruct wind components and other atmospheric variables from ReAnalysis 
data, providing a more precise representation of atmospheric conditions. This enhanced approach 
aims to improve the fidelity of contrail simulations, contributing to a better understanding of their 
impact on radiative forcing. 

 

 



D1.2 CONTRAIL TRACKING ALGORITHM 
 
 

   

  

Page | 16 
© –2024– SESAR 3 JU 

  
 

1.3 Content of the Document 

The document is organized as follows: Section 2 offers detailed descriptions of the data sources used 
for both contrail detection and the simulation of contrail dynamics. Section 3 delves into the specifics 
of these approaches, while Section 4 discusses the results obtained. Finally, Section 5 addresses the 
issues encountered, presents conclusions from our findings, and outlines future steps for refining these 
models as we transition to the next phases of the project. Section 6 provides a list of acronyms, and 
finally, Section 7 contains the references. 
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2 Data  

In this section, we provide a concise overview of the data sources that proved instrumental in the 
development of our contrail detection and simulation models, as well as those identified as valuable 
for subsequent validation or ground-truth label generation purposes. 

2.1 Data used for the contrail detection task 

In this section, we provide an overview of the data used for training the models and conducting 
experiments to test their performance on alternative image sources. Additionally, we review the data 
used for labelling contrails to generate ground truth, which allows us to compare the model predictions 
and assess their performance. 

2.1.1 Training Data 

The dataset used for training our models is the OpenContrails dataset [5] which incorporates data from 
the Geostationary Operational Environmental Satellites - 16 Series (GOES-16) as previously mentioned. 
We consider this dataset to be of great importance due to its substantial number of labelled scenes, 
as training neural networks necessitates sufficient data to encompass the variability of the objects we 
aim to detect. In Figure 5 and Figure 6 is shown the number of images within each set as well as the 
number of images containing contrails in each of them. 

 

Figure 5. Class distribution within the training set of OpenContrails 
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Figure 6. Class distribution within the validation set of OpenContrails 

 

Given the intricate nature of scenes, coupled with disparities in images arising from atmospheric, 
lighting, and weather conditions, as well as low resolution, having a vast quantity of data becomes 
imperative. This abundance of data enables the network to effectively capture the underlying patterns 
associated with contrail shapes, brightness levels, and dynamics. 

The images we have decided to use are the false-colour RGB image product, known as Ash RGB, 
composed of the BT channels described in Figure 7. 

 

Figure 7: The recipe for the Ash RGB composite [15] 

The models are trained to detect contrails on just a single frame since this dataset does not provide 
sequence-labels. The labels are binary masks like the one shown in Figure 8. 
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Figure 8: A false-colour RGB image with its corresponding contrail mask. 

 

2.1.2 Experimental Data 

We conducted preliminary experiments using data from the Spinning Enhanced Visible and InfraRed 
Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) satellite. This data has a resolution of 
3 km x 3 km in the infrared, which is significantly lower than the resolution of the data used for training, 
so we do not expect the results to be as accurate. Additionally, these images have a lower temporal 
resolution, providing a snapshot every 15 minutes. Here, as input for the detections (see Figure 9), we 
also use the false-colour Ash RGB product, which is presented briefly earlier. 

 

Figure 9. Example Ash RGB Image from MSG/SEVIRI. 

 

2.1.3 Validation Data 

To validate the detection performance on the experimental data, we need to generate ground-truth 
contrail labels by manually creating polygons that contain each of the contrails of an image as shown 
in Figure 10. 
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Figure 10. Contrail labelling using MSG/SEVIRI data 

We have decided to follow the methodology used by the team at Google Research, who created the 
OpenContrails Dataset. The steps are as follows: 

1. Plotting Trajectories: We begin by plotting all aircraft trajectories obtained from ADS-B data 
over a series of selected previous time steps onto the image we aim to label. This allows us to 
visualize the paths taken by aircraft in the region of interest. 

2. Filtering Trajectories: Next, we filter out trajectories that do not pass through areas where 
contrails are likely to form. Specifically, we apply a threshold where the temperature must be 
-40 degrees Celsius or lower and the relative humidity must be 90% or higher. These conditions 
are conducive to contrail formation. We set these conservative thresholds to ensure that no 
potential contrails are mistakenly discarded. 

3. Simulating Advection: We then simulate the movement of the contrails generated by these 
aircraft using the wind velocity field. For this simulation, we employ the second-order Runge-
Kutta method [16]. This step accounts for the wind-driven advection of the contrails, providing 
a more accurate representation of their actual positions over time. 

This process ensures an accurate matching of the observed contrails in the images with those 
potentially formed by each of the aircrafts that have flown that region. The process of generating these 
labels is summarized in Figure 11. 
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Figure 11. Plotting, filtering and advection aircraft trajectories based on ERA5 reanalysis data. 

To follow this steps, ERA5 data is used for filtering and advection of the flight paths.  ERA5 uses a 
sophisticated data assimilation system to integrate observational data from various sources (satellites, 
weather stations, aircraft, buoys) with a numerical weather prediction model. It offers a temporal 
resolution of 1 hour and a spatial resolution of approximately 30 km grid, providing detailed and 
accurate representations of atmospheric variables over time and space. 

Here, we are focusing on: 

❖ Temperature: It represents the thermal state of the atmosphere at different levels. A 
visualization example for a given pressure level is shown in Figure 12. 

 

Figure 12. ERA5 Temperature map. 

❖ Relative Humidity: It is the ratio of the current amount of water vapour in the air to the 
maximum amount of water vapour the air can hold at the same temperature, expressed as a 
percentage (%). A visualization example is shown in Figure 13. 
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Figure 13. ERA5 Relative Humidity map. 

❖ Wind Vectors: The east-west (zonal) component of wind is given by the U vector and the north-
south (meridional) component of wind is given by the v component (see Figure 14).  

 

Figure 14. ERA5 Wind flow field. 

Advection of potential contrails 

To simulate the advection of contrails due to wind by advectingeach aircraft's position, using wind 
vector fields and the second-order Runge-Kutta (RK2) method, you need to follow a step-by-step 
procedure that we are going to describe here. 

The advection of potential contrails can be described by the partial differential equation: 

𝑑𝑋

𝑑𝑡
= 𝑉(𝑋, 𝑡) 

Where 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is the position vector and 𝑉(𝑋(𝑡), 𝑡) = (𝑢(𝑋(𝑡), 𝑡), 𝑣(𝑋(𝑡), 𝑡)) the wind 

velocity vector. 

To do this, for each trajectory extracted from the ADS-B data of the form 𝑊 = {𝑋0, 𝑋1, … , 𝑋𝑇} (where 
𝑇 is the time at which the image has been taken), for each waypoint given initially as 𝑋𝑖 ,  to compute 

the advected 𝑋𝑖̂ need to iterate 𝑋(𝑡) over 𝑡 = 𝑖, … 𝑇 following these steps: 

1. Initial setup: 

- Set the aircraft position at an initial time 𝑡 (ADS-B data): 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) 

- Set the velocity vector at the initial position 𝑋(𝑡) (ERA5 data):  
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𝑉(𝑋(𝑡), 𝑡) = (𝑢(𝑋(𝑡), 𝑡), 𝑣(𝑋(𝑡), 𝑡)),      𝐤𝟏 = 𝑉(𝑋(𝑡), 𝑡) 

- Define as time step:  Δ𝑡 = 1 

2. Estimate the mid-point position between the initial position 𝑋(𝑡) and the position at the 
following time step 𝑋(𝑡 + Δ𝑡): 

𝑋 (𝑡 +
Δt

2
) = X(t) +

Δt

2
k1 

3. Estimate the velocity at the mid-point position: 

𝑉 (𝑋 (𝑡 +
Δ𝑡

2
) , 𝑡 +

Δ𝑡

2
) = (𝑢 (𝑋 (𝑡 +

Δ𝑡

2
) , 𝑡 +

Δ𝑡

2
) , 𝑣 (𝑋 (𝑡 +

Δ𝑡

2
) , 𝑡 +

Δ𝑡

2
)) ,     

 𝒌𝟐 = 𝑉 (𝑋 (𝑡 +
Δ𝑡

2
) , 𝑡 +

Δ𝑡

2
) 

4. Update the position at the following time step: 

𝑋(𝑡 + Δ𝑡) = 𝐗(𝑡) + Δt 𝒌𝟐 

5. Iterate this process until reaching 𝑋(𝑇) where 𝑇 is the time of the image 

6. Store 𝑋𝑖̂ = 𝑋(𝑇) 

*Note that the ERA5 wind vectors have lower spatial and temporal resolution than ADS-B so we need 
to interpolate each grid of wind vectors both in the spatial and temporal domain. 

 

2.2 Data used for the Physic-Driven contrail simulation task.  

In our physics-driven model, we relied on ReAnalysis data (ERA5) to represent atmospheric variables 
such as wind, relative humidity, and temperature. However, given limitations in resolution of the data, 
we employed neural network techniques to reconstruct these quantities over the target domain. 
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3 Methods 

In this section, we outline the methodology employed to attain the goal of correctly identifying regions 
of contrail formation in satellite imagery. We present various alternatives explored, elucidating the 
efficacy of each approach and the workarounds to the issues found. This includes a comprehensive 
examination of diverse model architectures and configurations, as well as the preprocessing and post-
processing techniques utilized to achieve best possible results combining knowledge with model 
detections. Furthermore, we discuss the performance metrics obtained from validating models using 
the original GOES-16 data with which we have trained the models, as well as a validation of the 
extrapolation of the techniques to European satellite data from experiments conducted with 
MSG/SEVIRI. 

Furthermore, we conduct an examination of the fundamental equations governing the phenomenon 
of ice crystal transportation caused by wind and the thermophysical characteristics of contrails. 
Additionally, we introduce a novel term to be integrated into these equations, addressing the impact 
of gravity on the dissipation of contrails. Subsequently, we introduce a model to simulate the evolution 
of contrails into non-linear clouds based on the afore-mentioned equations. 

3.1 Data-Driven Contrail Detection Models 

For this task, various approaches can be utilized to detect objects in images. For instance, one 
straightforward method involves detection using bounding boxes, which indicate the region of the 
image containing the object. However, for the task of contrail detection, this approach is suboptimal 
for two main reasons: 

▪ Firstly, models may struggle to discern the underlying patterns of contrails solely from 
information about the region they occupy, especially since these regions can be quite large 
and may contain other objects such as different types of clouds.  

▪ Additionally, for our purposes, simply receiving a prediction of the region where the contrail is 
located is insufficient. In the case of a geostationary satellite, being on one side of a region as 
opposed to the other could result in a difference of hundreds of kilometres, underscoring the 
need for additional information beyond just the detected region. 

 

Figure 15. Contrail Bounding Box Detection Labels 
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Another approach involves keypoint detection. This method entails training the model to concentrate 
solely on the crucial pixels that define an object, enabling it to recognize the key characteristics. In our 
scenario, an initial idea was to train a model to execute this task, utilizing the extremes and certain 
intermediate points of the segment that delineates the primary axis of the contrail's direction as 
keypoints. While this approach yielded relatively satisfactory performance, further exploration of 
alternative methods resulted in superior outcomes. 

 

Figure 16. Contrail Keypoint Detection Segments 

In the context of utilizing geostationary satellite imagery, where each pixel corresponds to a couple of 
square kilometres, even a small error of a few pixels can be translated to a significant error in terms of 
distance, potentially spanning many kilometres. Furthermore, clouds are dynamic entities; they 
undergo continuous changes and are better described as processes rather than static objects. Given 
this variability in shape and behaviour, employing semantic segmentation emerges as a more fitting 
strategy for accurately identifying them at their specific locations and capturing their precise shapes. 
Semantic segmentation involves determining, for each pixel location in the image, whether that pixel 
belongs to a contrail or not. This approach allows for a more granular understanding of the cloud 
distribution and facilitates precise delineation of their boundaries within the images.  

 

Figure 17. Contrail Semantic Segmentation Mask 

While the semantic segmentation method appears suitable for our current problem, it presents a 
significant drawback when considering future applications: the model does not distinguish between 
individual contrail instances. In cases where regions of contrails overlap, the model is unable to provide 
information for each separate object. This limitation has several implications, such as:  
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o We cannot differentiate between aviation-induced cloudiness and regions with linear contrails 
occurring at different altitudes.  

o We cannot track the evolution of each individual contrail over time. 

o We cannot match each contrail to the aircraft that generated it. 

o We cannot accurately study the dynamics of cloud dissipation phenomenon. 

To address this challenge, we have two potential solutions:  

✓ Firstly, we can develop a post-processing procedure that can be seamlessly integrated as a 
final step to the semantic segmentation model outputs. This procedure would extract each 
contrail instance from a binary mask, enabling individual identification and analysis. 

✓ Alternatively, we can directly use an instance segmentation model, which is directly fed with 
polygons that outline each contrail instance in the image.  

 

Figure 18. Contrail Instance Segmentation Polygons 

However, we realized that for the second approach, we would also need to convert the masks into 
contrail polygons for training purposes. This is necessary because the labels provided by the dataset 
we intend to use, the OpenContrails Dataset, are structured to train a semantic segmentation model.  

To address this requirement, we developed a methodology specifically tailored for this transformation, 
which will be detailed in the next subsection. As a result, we trained both instance segmentation and 
semantic segmentation models and compared their performances. 

3.1.1 Methodology for Instance Retrieval 

Given the substantial number of masks and the diverse contrail intersection scenarios in them (See 
Figure 19) our goal is to devise a methodology that effectively isolates each contrail.  
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Figure 19. Binary ground truth masks in low (left) and high (right) contrail coverage scenario. 

Considering the linear nature and inherent width of each contrail feature, we conceptualize the most 
fitting ellipsoid to approximate it (See Figure 20). Then, we retrieve the original contour of each 
instance and designate it as its label. Initially, we pinpoint the longest axis of the ellipsoid, representing 
the advected aircraft trajectory, and subsequently retrieve the complete shape.  

 

Figure 20. Examples of the ellipsoids aiming to approximate the proposed methodology. 

We observe an implicit assumption of linearity in contrail shapes. In instances with a slight curvature 
(See the right plot in Figure 21), the contrail width allows the identification of the linear segment that 
represents the aircraft trajectory. Even when there is more pronounced curvature (See the left plot in 
Figure 21), our approach proficiently identifies the contrail as a combination of distinguishable 
subsegments, supporting the justification for this simplifying assumption. 
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Figure 21. A highly curved advected contrail shape (left) and a slightly curved linear contrail. 

One main reason why for this study we prioritize contrail isolation over precise contour accuracy is due 
to persistent discrepancies among human labellers in annotations from [5], despite verification from 
sources like ADSB and weather data. Nevertheless, refining this methodology for enhanced pixel-level 
accuracy and broader applicability may be necessary. 

The following section briefly introduces certain background concepts to ensure consistent notation 
throughout the explanation. 

Preliminary concepts and notation 

Let 𝐽 be an open finite subset of 𝑅𝟚, defining the spatial extent of a 2-dimensional image of size. We 
introduce the following definitions: 

A finite set of ordered pairs 𝐺 = {(𝑖, 𝑗) ∣ 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗 ≤ 𝑚; 𝑛, 𝑚 ∈ 𝑁} representing the positions 
of the image elements within the spatial extent 𝐽 is referred to as image grid. 

A collection of uniformly shaped, uniformly spaced and equally distant samples 𝑃 = {𝑃(𝑖,𝑗) ∈ 𝐽 ∣

(𝑖, 𝑗) ∈ 𝐺} satisfying 

a) 𝐽 = ⋃ 𝑃(𝑖,𝑗)(𝑖,𝑗)∈𝐺  

b) 𝑃(𝑖,𝑗) ∩ 𝑃(𝑣,𝑤) = ∅ ∀(𝑖, 𝑗), (𝑣, 𝑤) ∈ 𝐺 (𝑖, 𝑗) ≠ (𝑣, 𝑤) 

c) 𝐴𝑟𝑒𝑎(𝑃(𝑖,𝑗)) = 𝐴𝑟𝑒𝑎(𝑃(𝑣,𝑤)) ∀(𝑖, 𝑗), (𝑣, 𝑤) ∈ 𝐺 

are referred to as image pixels and represent the smallest image elements. 

Given a fixed number of spectral channels 𝐶, the image function is defined as 𝐷: 𝐽 ⟶ 𝑅𝐶 defined as 

𝐷(𝑃(𝑖,𝑗)) = 𝑙(𝑖,𝑗) where 𝑙(𝑖,𝑗) = (𝑙(𝑖,𝑗)
1 , … , 𝑙(𝑖,𝑗)

𝐶 ) is the vector representing the light intensity values of 

𝑃(𝑖,𝑗) at each spectral channel. The digital image is the matrix  𝐼 ∈ Mm×n(Rc) defined by function 𝐷.  

With the provided definition of an image grid and a given set of objects of interest𝐹\𝑐𝑜𝑙𝑜𝑛𝑒𝑞𝑞{𝑂𝑟 ∣
𝑟 = 1, … , 𝑅} verifying 

I. 𝐹 = {𝑃(𝑖,𝑗) ∣ (𝑖, 𝑗) ∈ ⋃ 𝐺𝑟}𝑅
𝑟=1 𝑤ℎ𝑒𝑟𝑒 ⋃ 𝐺𝑟

𝑅
𝑟=1 ⊂ 𝐺 

II. 𝑂𝑟 = {𝑃(𝑖,𝑗) ∣ (𝑖, 𝑗) ∈ 𝐺𝑟 ⊂ 𝐺}𝑓𝑜𝑟𝑒𝑎𝑐ℎ𝑟 = 1, … , 𝑅 

III. 𝑂𝑟  𝑖𝑠 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓  𝑅𝟚 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑢𝑠𝑢𝑎𝑙 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 = 1, … , 𝑅 

we can define a function that classifies image pixels, generating a binary semantic segmentation mask. 
We only define the binary case because for this study we can assume that all objects of interest in 𝐹 
either share the same class or do not necessitate differentiation between classes. 
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Let 𝐺 be an image grid and 𝑆𝐹: 𝐺 ⟶ {0,1} be a function that for each point in the grid (𝑖, 𝑗) ∈ 𝐺  takes 
the value 𝑆𝐹(𝑖, 𝑗) = 0 if 𝑃(𝑖,𝑗) ∉ 𝐹 and 𝑆𝐹(𝑖, 𝑗) = 1if 𝑃(𝑖,𝑗) ∈ 𝐹 then, the binary semantic segmentation 

mask of the image is the matrix 𝑀𝑆𝐹 ∈ Mm×n({0,1}) of the function 𝑆𝐹. The set 𝐹 is often referred as 
set of foreground pixels, while 𝐵 =  𝑃 − 𝐹 is called set of background pixels.  

Description of the instance retrieval methodology 

Given 𝐹 and 𝑆𝐹, in accordance with the preceding definitions, and considering the corresponding 
binary semantic segmentation mask 𝑀𝑆𝐹 , wherein 𝐾 linear contrails are segmented, the goal is to find 

the set 𝑋∗ = {𝑋𝑘
∗ ∣ 𝑘 = 1, … , 𝐾} where 𝑋𝑘

∗ = {(𝑥0
∗𝑘

, 𝑦0
∗𝑘

) , … , (𝑥𝑡𝑘

∗𝑘
, 𝑦𝑡𝑘

∗𝑘
)} is the set of coordinates that 

best describes the contour of each individual contrail 𝑘 for each 𝑘 = 1, . . , 𝐾. 

For the sake of simplicity, if the mask 𝑀𝑆𝐹 ∈ 𝑀𝑚×𝑛({0,1}) has 𝑅 ≤ 𝐾 connected components, we 

decompose it into 𝑅 binary masks {𝑀
𝑆𝐹
𝑟 }𝑟=1

𝑅 , each containing a single connected component. The 

decomposition is performed using the algorithm outlined in [17]. Then, since  𝑋∗ = ⋃ 𝑋𝑟∗𝑅
𝑟=1 , we 

independently identify 𝑋𝑟∗ within each 𝑀
𝑆𝐹
𝑟  following the steps detailed next. To lighten the notation, 

we will omit the superscript 𝑟. However, it's important to note that these steps should be executed 
within each connected component mask instead of within each original mask to enhance performance 
and speed. 

➢ Binary Mask Parametrization: Before accurately identifying the segments that represent the 
longest axis of the ellipsoid that best characterizes each contrail within a given connected 
component mask, our initial task is to locate all existing line segments within that mask. This 
is why we want to find each set 𝐿 of the form 𝐿𝑎𝑏 =  {(𝑥, 𝑦) & ∈ 𝐺 ∣  𝑆_𝐹(𝑥, 𝑦) = 1 ∃𝑎, 𝑏 ∈
𝑅 ∶  𝑦 = 𝑎𝑥 + 𝑏}.  

Consider θ ∈ [−
π

2
,

π

2
] as the angle of the normal line 𝑡𝑜 𝑦 =  𝑎𝑥 +  𝑏 with respect to the 

origin and let ρ ∈ 𝑅 be its algebraic distance from the origin. The line equation can be 
expressed in its polar form as ρ = 𝑥 cos(θ) + 𝑦 sin(θ) and each 𝐿𝑥𝑦 can be rewritten as    𝐿θρ    

 =  {(𝑥, 𝑦) & ∈ 𝐺 ∣ 𝑆_𝐹(𝑥, 𝑦) = 1; ∃θ ∈ [−
𝜋

2
,

𝜋

2
] , ∃ρ ∈ 𝑅 ∶  ρ =  𝑥 cos (θ)  +  𝑦  sin (θ)}. 

Notably, this new polar equation represents a sinusoidal curve in the ρ − θ parameter space. 
Therefore, every point (𝑥, 𝑦) in image space uniquely corresponds to a sinusoidal curve in 
parameter space. This duality between both spaces also indicates that there exists a 
correspondence between a set of co-linear points in the original image space and a set of 
concurrent curves in the parameter space [18]. Given this perspective, we can approach the 
challenge of line identification in image space as the task of identifying points of intersection 
among multiple curves in parameter space. 

 

•  

Figure 22. Transformation of the binary mask to the 𝛒 − 𝛉 space 
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➢ Thresholding based on Hough Accumulator: This conversion of the binary mask into a two-

dimensional parameter space is achievable through either the Radon or Hough Transform [19]. 
The resultant graph, referred to as the Radon or Hough sinogram, illustrates the intensity 
values of sinusoidal curves. Although the Radon transform achieves a task akin to the Hough 
Transform, it operates in a continuous parameter space instead of the discretized cells used in 
the Hough Transform. In this study, we derive the sinogram by employing the Hough 
Accumulator, defined as the function 

𝐻(ρ, θ) = ∑ 𝑆𝐹(𝑥, 𝑦)δ(ρ − 𝑥𝑐𝑜𝑠(θ) − 𝑦𝑠𝑖𝑛(θ))
(𝑥,𝑦)∈𝐺

 

where δ(⋅) is the Dirac Delta function. We will only consider as parameters defining a line in 
the original image the (ρ, θ) satisfying 𝐻(ρ, θ) ≥ 𝑐 for a selected threshold 𝑐, that will 
represent the minimum number of concurrent sinusoids that must intersect at (ρ, θ) to qualify 
these parameters as indicative of a line within the image. The threshold 𝑐 can also be 
interpreted as the minimum length we want to establish for the detected lines. In the context 
of our masks, it has been observed that this parameter must be set to ≈ 12 pixels, that is 
approximately the medium width of the contrails we are targeting to isolate. This is because 
we want to discard from this line detections that have a length equal to or less than the 
smallest axis of the approximated contrail ellipsoids. 

 

Figure 23. Lines detected with the Hough transform. 

 

➢ Clustering: After successfully identifying the set of targeted line parameters χ𝑐 = {(ρ, θ) ∣
𝐻(ρ, θ) ≥ 𝑐} we proceed to cluster the points within this set. Utilizing a fixed size preselected 
through black box optimization, we determine the centroid for each cluster. The resultant set 
of centroids, denoted as χ𝑐

′  and computed as the median values within each cluster, becomes 
the line parameters for our original image. The corresponding image lines are defined as: 𝐿χ𝑐

′ =

{𝐿ρθ ⊂ 𝐺 ∣ (ρ, θ) ∈ χ𝑐
′ } 
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Figure 24. Lines detected with Hough transform after removing similar segments. 

 
➢ Refinement: The final segments would be the intersection of the detected lines with the 

foreground pixels in the mask as shown in Figure 25. To ensure no contrails have been lost 
during the clustering process, we take the following steps: 
 

o Intersect the lines with the foreground pixels.  
o Create a new mask with the foreground pixels that does not belong to the intersection. 
o Create a separate mask for each connected component of the new mask. 
o Apply steps I-III independently to each of these sub-connected component masks. The 

centroids identified in this process for each of this sub masks are added to the set 𝐿χ𝑐
′ . 

o Iterate this process until there are no more foreground pixels left. 
 

Once all foreground pixels have been processed, we address the possibility of duplicates that 
may have emerged during the iteration. To accomplish this, we merge sets of coordinates that 
coincide, are very close to each other, or where one set is a subset of the other. 

 

Figure 25. Subsegments retrieved from the lines detected. 

➢ Contouring: The final set 𝐿χ𝑐
′  contains the segments that represent the longest axis of the 

contrails in the image. To now retrieve the ellipsoid that approximates the contour of each 
contrail, and then retrieve the actual contour shape, we will do the following to each segment 
separately: 
 

o Create a black mask and plot all the detected segments. 
o Apply the morphological operation of dilation to the mask in 3 iterations to thicken 

the segment. 
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o Intersect separately each connected component with the original mask and find the 
contour of the foreground pixels using the Canny edge detector [20]. 

o Add the coordinates of the contours to the set 𝑋∗ 

 

 

Figure 26. Independent contrail instances retrieved from the original binary mask. 

3.1.2 U-Net Model 

The U-Net model, introduced in a [21] in 2015, is renowned for its effectiveness in semantic 

segmentation tasks. Its success has inspired numerous modifications and adaptations over the years. 

The U-Net is built on an encoder-decoder architecture, which can be formally described as follows: 

Given a feature space ϕ and a lower-dimensional space ψ known as the latent space, the encoder is 

defined as a mapping 𝐶:  ϕ ⟶  ψ that transforms each input data point 𝑥 ∈ ϕ into a lower-

dimensional representation  𝑧 = 𝐶(𝑊𝑐 , b𝑐; 𝑥) ∈ ψ and it is uniquely defined by the parameters 

{𝑊𝑐 , 𝑏𝑐}. The representation z is referred to as the latent code. 

Similarly, given a feature space ϕ and a latent space ψ the decoder is defined as a mapping 𝐷: ψ ⟶ ϕ 

that transforms the latent code 𝑧 ∈ ψ into a reconstruction of the original data point 𝑟 =

𝐷(𝑊𝑑 , 𝑏𝑑; 𝑧)  ∈ ϕ  where {𝑊𝑑, b𝑑} are the model parameters. 

With these definitions, given and encoder 𝐶:  𝜙 ⟶  𝜓 and a decoder 𝐷: 𝜓 ⟶ 𝜙, the encoder-decoder 

network, also known as autoencoder, can be defined as an application 𝐴: 𝜙 ⟶  𝜓 ⟶ 𝜙 such that 

𝐴(𝑥) = 𝑟  for each 𝑥 ∈ 𝜙, where  𝑟 = 𝐷(𝑊𝑑 , 𝑏𝑑; 𝑧)  and  𝑧 = 𝐶(𝑊𝑐 , b𝑐; 𝑥). 

In the U-Net model, each layer in both the encoder and the decoder performs discrete 2-dimensional 

convolution operations. This convolution operation ∗ is given by 

(ℎ ∗ 𝑊 + 𝑏)(𝑖, 𝑗) = ∑ ∑ ℎ(𝑖 − 𝑚, 𝑗 − 𝑛)𝑊(𝑚, 𝑛)

𝑘

𝑛=−𝑘

𝑘

𝑚=−𝑘

+ 𝑏 

where ℎ is the input feature map, 𝐾 is the convolution kernel, 𝑏 is the bias term, (𝑖, 𝑗) are the spatial 

coordinates of the output and 𝑘 is the half-width of the kernel of size (2𝑘 + 1) × (2𝑘 + 1). 
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The output of each layer i  ∈ {1, . . , nl} of the encoder is given by ℎ𝑖 = fi(𝐾𝑖 ∗ ℎ𝑖−1 + 𝑏𝑖), where 𝑓𝑖 in 

our case denotes the activation function σi  of the 𝑖-th layer followed by a normalization operation N 

and a pooling operation.  

The Rectified Linear Unit (ReLU) function given by ReLU(𝑥) = max(0, 𝑥), along with its variants such 

as Leaky ReLU or Gaussian Error Linear Unit (GeLU), is commonly employed as the activation function 

for intermediate layers in neural networks due to its simplicity and effectiveness in promoting 

nonlinear behaviour within the network. For the output layer, we utilize in stead the Sigmoid activation 

function defined as Sigmoid(𝑥) =
1

1+𝑒−𝑥. This function is specifically designed to map the values of 

each pixel to probabilities. As for the pooling operation, various alternatives exist to downsize the 

feature maps of each layer. Popular methods include 

a) Max-pooling: Involves creating new feature maps by selecting each element of the pooling 

layer as the maximum value within its neighbourhood region. For ech spatial location (i,j), the 

corresponding value in the pooling layer would be 𝑝𝑖𝑗 = 𝑥𝑝′𝑞′𝑘′  such that 𝑥𝑝′𝑞′𝑘′ =

max(𝑥𝑝𝑞𝑘) ∈ 𝑅𝑖𝑗, where 𝑅𝑖𝑗  denotes the region formed by the set of neighbours of 𝑝𝑖𝑗 , and 

each 𝑥𝑝𝑞𝑘 represents the element at position (𝑝, 𝑞) of 𝑅𝑖𝑗  in feature map 𝑘. 

b) Average-pooling: Computes each element of the pooling layer as the arithmetic mean of its 

neighbours in the input layer. For ech spatial location (i,j), the corresponding value in the 

pooling layer would be 𝑝𝑖𝑗 =
1

|Rij|
∑ xpqk xpqk∈Rij

. 

In the U-Net model, the layers in the decoder perform transposed convolutions and make use of 

upsampling operations that are the inverse pooling operations that retrieve feature maps with higher 

dimensionality.  

Additionally, the U-Net introduces the concept of skip connections in the decoder. Therefore, the 

output of the 𝑖 − 𝑡ℎ layer is given by ℎ𝑖̂ = 𝑓(𝑊𝑖
𝑇 ∗ [ℎ𝑖−1

̂ , ℎ𝑛𝑙−𝑖] + 𝑏𝑖) where [ℎ𝑖−1
̂ , ℎ𝑛𝑙−𝑖] denotes the 

concatenation of feature maps from the decoder and the corresponding encoder layer. By directly 

connecting early and late-stage layers, skip connections help mitigate information loss during 

downsampling and facilitate the flow of gradients during training. This allows the model to better 

preserve spatial information, capture fine details, and produce more accurate predictions, leading to 

improved performance. 

The U-shape of this network is primarily due to the incorporation of these skip connections (see Figure 

27).  
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Figure 27. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds 
to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided 
at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different 
operations [21]. 

In recent years, Transformer networks, known for their prowess in processing sequential data in 

Natural language Processing (NLP), have been adapted for image processing, forming Vision 

Transformers (ViTs). These models leverage attention layers to capture global context and long-range 

dependencies within images efficiently. Self-attention enables each spatial location in the input 

feature map to compute attention weights based on its relationship with all others, facilitating parallel 

computation and making ViTs well-suited for tasks with large feature maps. Considering our problem, 

incorporating these layers could notably improve the model's performance, especially given the 

substantial input size (256 𝑥 256 𝑥 3) and the complex interrelations among image elements. 

For ViTs, the inputs are not full images but rather a series of vectors called image tokens. These tokens 

are computed as following these steps: 

o Patching: The input image of size (𝐻, 𝑊, 𝐶)  is divided into 𝑁𝑝 non-overlapping patches of 

size (𝑃, 𝑃, 𝐶) , denoted as {𝑝1, … . , 𝑝𝑁𝑝
} where 𝑁𝑝 =

𝑊

𝑃
×

𝐻

𝑃
 is the total number of patches 

o Flattening: Each patch 𝑝𝑖 is resized into a vector 𝑣𝑖 of size 𝐷 = 𝑃 × 𝑃 × 𝑃 × 𝐶 

o Tokenization: Each final token t_i is obtained by 𝑡𝑖 = 𝑣𝑖 + 𝑃𝐸𝑖  where 𝑃𝐸𝑖 = (𝑝𝑒1, … , 𝑝𝑒𝐷) 

stands for the positional embedding vector. Here 𝑝𝑒𝑑 = sin (
𝑖

10000
2𝑑
𝐷

) if 𝑑 is even and 

𝑝𝑒𝑑 = cos (
𝑖

10000
2𝑑
𝐷

) if 𝑑 is odd for 𝑑 = 1, … , 𝐷 

As a general formulation, in a self-attention layer we transform the input feature map ℎ into three 

sets of vectors: queries (𝑄), keys (𝐾), and values (𝑉). This transformation is accomplished by applying 

learnable weight matrices 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉. Thus, for each spatial location, we compute the following 

vectors 
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𝑞𝑖,𝑗 = ℎ𝑖,𝑗 ⋅ 𝑊𝑞 ,  𝑘𝑖,𝑗 = ℎ𝑖,𝑗 ⋅ 𝑊𝑘 ,  𝑣𝑖,𝑗 = ℎ𝑖,𝑗 ⋅ 𝑊𝑣 

Then, the attention weights are computed as α𝑖,𝑗 = softmax (
𝑞𝑖,𝑗⋅𝑘𝑖,𝑗

𝑇

√𝑑𝑘
) , where 𝑑𝑘 represents the 

dimensionality of the key vectors 𝑘𝑖,𝑗. Finally, the output feature map of the layer would be given by 

ℎ𝑖,𝑗 = ∑ ∑ α𝑖,𝑗,𝑚,𝑛

𝑊

𝑛=1

𝐻

𝑚=1

⋅ 𝑣𝑚,𝑛 

Research has led to many attention layer adaptations like multi-head attention, scaled-dot product 

attention, conv-attention, multi-axis attention, or efficient multi-head self-attention, among others. 

These, combined with diverse integration strategies involving convolutional layers, activations, and 

normalizations, have given rise to numerous state-of-the-art architectures. These architectures are 

tailored to specific tasks and domains, offering distinct advantages based on requirements and data 

characteristics.  

When applied as backbones for models like U-net, they significantly enhance performance, particularly 

in complex tasks such as segmenting complex contrail patterns in satellite imagery. Incorporating these 

advanced backbones will ensure superior feature extraction and segmentation precision for our 

application. 

Drawing insights from the Google Research competition leaderboard, our strategy entailed choosing 

the most effective backbone architectures and investigating their limitations. This method enabled us 

to uncover potential solutions to enhance overall performance. We deemed this approach optimal for 

leveraging the discoveries made by fellow researchers, thereby facilitating our own learning process 

and advancing our understanding of model design and optimization. 

The Next Generation Vision Transformer (NextViT) [22] has emerged as a high-performing model in 

several leaderboard solutions of this competition. For this model, in its 2022 paper, the authors 

conducted a performance comparison on the widely used ImageNet dataset, which serves as a 

benchmark for evaluating model performance. The comparison results, as depicted in Figure 28 clearly 

showcase NextViT's superiority in image classification tasks on this specific dataset. Therefore, 

recognizing the efficacy of NextViT, we made the deliberate choice to incorporate this backbone 

architecture as one of the primary options for our U-Net model. 
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Figure 28. Comparison among Next-ViT and efficient Networks, in terms of accuracy-latency trade-off on the 
ImageNet-1K for classification on TensorRT [22]. 

For similar reasons, we have also decided to test as backbone alternatives for our model the following 

architectures: Co-Scale Conv-Attentional Image Transformers (CoaT) [23] and Multi-Axis Vision 

Transformer (MaxViT) [24]. 

Some of the main characteristics of each of them are the following: 

1. NextViT: The architecture of this new generation of transformers is illustrated in Figure 29. 

The left column displays the overall hierarchical structure of Next-ViT. The middle column 

details the components: the Next Convolution Block (NCB) and the Next Transformer Block 

(NTB). The right column provides a detailed visualization of the multi-head convolutional 

attention (MHCA), efficient multi-head self-attention (E-MHSA), and the optimized MLP 

modules. This enhanced hybrid architecture combines the strengths of CNNs and 

transformers, resulting in a powerful and efficiently deployable CNN-Transformer model. 
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Figure 29. Overall architecture of the NextViT model 

2.  CoaT: The main contributions of this network are the introduction of efficient conv-attention 

operations and co-scale mechanisms. In the conv-attention module a new factorized attention 

module defined as is introduced. The overall structure of this block is shown in Figure 30. In it 

a convolutional position encoding is applied to the image tokens from the input. The resulting 

features are fed into a factorized attention with a convolutional relative position encoding. 

 

Figure 30. . Illustration of the conv-attentional technique [23]. 

The co-scale mechanism, on the other hand, is designed to integrate fine-to-coarse, coarse-to-fine, 
and cross-scale information into image transformers. Two types of blocks are proposed: serial and 
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parallel blocks. Within the parallel blocks, two co-scale variants are introduced: direct cross-layer 
attention and attention with feature interpolation (see Figure 31). 

 

Figure 31. Schematic illustration of the parallel group in CoaT [23]. 

The overall architecture is shown in Figure 32. On the left it shown CoaT-Lite architecture, that consists 
of serial blocks only, where image features are down-sampled and processed in a sequential order. On 
the right it is shown the CoaT architecture, that consists of serial blocks and parallel blocks. Both blocks 
enable the co-scale mechanism. 

 

Figure 32. CoaT Model Architecture 

3. MaxViT: This work introduces a unified design that combines the efficiency of convolutional 

operations with the flexibility of sparse attention, enabling it to scale effectively to very large 

datasets. The proposed model, called multi-axis attention, features two key components: 

blocked local attention and dilated global attention.  

These design choices facilitate global-local spatial interactions for inputs of any resolution, 

maintaining only linear complexity. The architecture, as shown in Figure 33, follows a 

hierarchical design like ConvNets and ResNet but introduces a new type of basic building block 

that integrates Mobile Inverted Bottleneck Convolution (MBConv), block attention, and grid 

attention layers. For simplicity, normalization and activation layers are omitted from the 

description. 
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Figure 33. Overall architecture of the MaxViT model 

The results for the MaxViT model are not included in this document due to the inability to achieve 
satisfactory performance. A further exploration is needed to find the issues that might have caused 
these unsatisfactory results. 

3.1.3 YOLO Model 

The YOLO (You Only Look Once) model is a convolutional neural network (CNN) proposed by Joseph 
Redmon in 2015. Its popularity stems from its high accuracy despite its compact size and the ability to 
be trained on a single GPU [25].  

In its early versions, YOLO was implemented in C code within the custom deep learning framework 
called "Darknet." Later, Ultralytics followed with the YOLOv3 repository in PyTorch, which evolved into 
YOLOv5 in 2020. Thanks to its open-source nature, various developers have created several YOLO 
derivatives in recent years, such as Scaled-YOLOv4, YOLOR, and YOLOv7, by making small modifications 
to Ultralytics' YOLOv5 model. Meanwhile, Ultralytics has been working on releasing the latest and most 
advanced version of YOLO, called YOLOv8, on January 10, 2023. This version builds on the success of 
previous iterations and introduces new features and improvements to enhance performance, 
flexibility, and efficiency. Figure 34 illustrates the temporal evolution of this model. 

 

Figure 34. Temporal evolution of the distinct YOLO versions  
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The architecture of the YOLOv8 convolutional network features a pyramidal-shaped backbone 
(encoder) with 5 blocks, allowing for object detection at different scales by upsampling and 
concatenating the outputs across different layers. 

 

Figure 35. Overall Architecture of the YOLOv8 model. 

In Figure 35, the Up and C blocks stand for Upsampling and Concatenation (across the channel 
dimension), respectively. The CBS module stands for Convolution - Batch Normalization - SiLU 
activation. This last two operations are defined as follows: 

• Batch Normalization: Given a batch of size 𝐵 and layer outputs of size (𝐻, 𝑊, 𝐶), first the 
mean and the standard deviation across the batch for each channel 𝑐 are computed as 

μ𝑐 =
1

𝐵⋅𝐻⋅𝑊
∑ ∑ ∑ ℎ𝑖,𝑗,𝑐,𝑘

𝑊
𝑘=1

𝐻
𝑗=1

𝐵
𝑖=1                   σ𝑐

2 =
1

𝐵⋅𝐻⋅𝑊
∑ ∑ ∑ (ℎ𝑖,𝑗,𝑐,𝑘 − μ𝑐)

2𝑊
𝑘=1

𝐻
𝑗=1

𝐵
𝑖=1  

Then, the output of each layer is normalized as ℎ𝑖,𝑗,𝑐,𝑘
′ =

ℎ𝑖,𝑗,𝑐,𝑘−μ𝑐

√σ𝑐
2+ϵ

 , using ϵ to avoid division 

by zero. Finally, the normalized output is shifted and scaled as 

𝑦𝑖,𝑗,𝑐,𝑘 = γ𝑐 ⋅ ℎ𝑖,𝑗,𝑐,𝑘
′ + β𝑐 

Where γ𝑐 and  β𝑐 are parameters learned by the network that ensure the network can 
adjust the normalized features to any desired mean and variance, instead of fixing the 
mean and variance to zero and one values that can lead to vanishing or exploiting 
gradients. 

• Sigmoid Linear Unit (SiLU) activation: It is a non-linear activation providing a smooth, non-
saturating response, which helps mitigate the vanishing gradient problem. It can be 

expressed as 𝑆𝑖𝐿𝑈(𝑥) = 𝑥 ⋅ σ(𝑥) where σ(𝑥) =
1

1+exp(−𝑥)
. 

The main block within the YOLOv8 framework, however, is the C2f block, that combines the ELAN 
(Efficient Layer Aggregation Networks) concept from YOLOv7 [26] with the C3 module from YOLOv5. 
This new block ensures that the gradient flow is used effectively while maintaining the network's 
lightweight nature, as shown in Figure 36.  
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Figure 36. A comparison between the C2f Block of YOLOv8 (left) and C3 Block of YOLOv5 (right). 

In the previous figure, S stands for the split operation and the bottleneck is composed of sequential 
CBS blocks with a residual connection or shortcut as shown in Figure 37. 

 

Figure 37. Bottleneck Block in YOLOv8 

Finally, the SPPF (Spatial Pyramid Pooling Fusion) module in YOLO is used to capture information at 
different spatial scales and merge it to obtain a global representation. Its structure is depicted in Figure 
38. 

 

Figure 38. Spatial Pyramid Pooling Fusion Block in YOLOv8 

 

The output Detect block computes in parallel two sequential CBS blocks plus a 2D convolution, 
followed in the first case by a Bounding Box Regression Loss and in the second by a Classification Loss, 
as shown in Figure 39. The model has a decoupled head, which means that it can be adapted to perform 
different tasks: 

❖ YOLOv8: performs object detection with bounding boxes 

❖ YOLOv8-seg: performs object detection with bounding + instance segmentation 

❖ YOLOv8-pose: performs object detection with bounding + keypoint detection 
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Figure 39. Detect Block in YOLOv8 

o Bounding Box Regression Loss: Utilizes the Complete Intersection over Union (CIoU) + + 
Distribution Focal Loss (DFL) function.  

The CIoU function is based on the similarity between the area of the detected object 𝐵 and 
the area of the ground truth object 𝐵𝑔𝑡, also considering the distance between the bounding 

boxes. It is given by the equation 

ℒ𝒞ℐℴ𝒰 = 1 − 𝐼𝑜𝑈 + ℛ𝒟ℐℴ𝒰 + α𝑣 

Having  

- The Intersection over Union defined as 

𝐼𝑜𝑈 =
|𝐵 ∩ 𝐵𝑔|

|𝐵 ∪ 𝐵𝑔|
 

- The Distance IoU penalty term given as 

ℛ𝒟ℐℴ𝒰 =
𝑑2(𝑏, 𝑏𝑔𝑡)

𝑐2
 

where 𝑏 and 𝑏𝑔𝑡 are the centre locations of 𝐵 and 𝐵𝑔𝑡 respectively, 𝑑 is the 

Euclidean distance and 𝑐 is the diagonal of the smallest box covering 𝐵 and 
𝐵𝑔𝑡 . 

- 𝑣 known as the trade-off parameter and given by  

𝑣 =
4

π2 (arctan
𝑤𝑔𝑡

ℎ𝑔𝑡
− arctan

𝑤

ℎ
)

2

 

 where 𝑤 and ℎ and the with and height of 𝐵, respectively, and 𝑤𝑔𝑡 , ℎ𝑔𝑡 the 

width and height of 𝐵𝑔𝑡. 

- α called compensation parameter and defined as  

α =
𝑣

1 − 𝐼𝑜𝑈 + 𝑣
 

On the other hand, the DFL function focuses on the distribution existing in the environments 
close to the object. Thus, given a label 𝑦 ∈ [𝑦𝑖 , 𝑦𝑖+1]and given  ℎ𝑖 and ℎ𝑖+1 the outputs of layer 
𝑖 and 𝑖 + 1, the DFL function is defined as 

𝐷𝐹𝐿(ℎ𝑖 , ℎ𝑖+1) = −(𝑦𝑖+1 − 𝑦) log(ℎ𝑖) + (𝑦 − 𝑦𝑖) log(ℎ𝑖+1) 
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o Classification Loss: The VariFocal Loss (VFL) is based on the Binary Cross Entropy (BCE) loss 
function. BCE is commonly used for classification tasks and measures the difference between 
two probability distributions for a given random variable or set of events. Given the true 
distribution 𝑝 and the estimated distribution  𝑞, the BCE is given by: 

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥) log(𝑞(𝑥))

𝑥∈χ

+ (1 − 𝑝(𝑥)) log(1 − 𝑞(𝑥)) 

To improve this function and scale the losses the VFL is given as 

𝑉𝐹𝐿(𝑝, 𝑞) = −𝑞(𝑞 log(𝑝) + (1 − 𝑞) log(1 − 𝑝))     𝑖𝑓 𝑞 ≥ 0 

and  

𝑉𝐹𝐿(𝑝, 𝑞) = −α𝑝λ log(1 − 𝑝)      𝑖𝑓 𝑞 = 0 

 Here, 𝑝λ is a scaling factor for the loss, and  α is a regularization term.  

 

3.1.4 Mask-RCNN Model 

The Mask Region-based Convolutional Neural Network (Mask R-CNN) [27] It extends Faster R-CNN by 
adding a branch for predicting segmentation masks on each Region of Interest (RoI), in parallel with 
the existing branch for classification and bounding box regression.  

In contrast to the YOLO model, Mask R-CNN is considered a two-stage detector. Each prediction goes 
through two distinct processing stages: first, the Region Proposal Network (RPN) identifies candidate 
object regions (RoIs), and then a fully connected head processes these regions to refine the predictions 
for classification, bounding box regression, and mask generation. This overall architecture is shown in 
Figure 40. 

 

Figure 40. Mask R-CNN overall architecture 

Backbone 
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There exist different options as backbone for Mask R-CNN, in our case the best performance was found 
for Residual Network (ResNet) 50, where its specific structure is shown in Figure 41. ResNet-50 has 50 
layers, including convolutional layers, batch normalization layers, activation functions (ReLU), and fully 
connected layers. The key feature in ResNet-50 is the introduction of residual blocks, which allow the 
network to learn residual functions with reference to the layer inputs, instead of learning unreferenced 
functions. This helps in training much deeper networks by making it easier to optimize. If a regular 
layer of the network is defined as ℎ𝑖 = fi(𝐾𝑖 ∗ ℎ𝑖−1 + 𝑏𝑖)=𝐹(ℎ𝑖−1), then the residual layer would be 
defined as ℎ𝑖 = 𝐹(ℎ𝑖−1) + ℎ𝑖−1. 

 

Figure 41. Architecture of ResNet-50 

Region Proposal Network (RPN) 

The RPN functions as a fully convolutional network that takes a feature map derived from the input 
image and outputs a set of rectangular object proposals, each accompanied by an objectness score. 

❖ Initially, a 3x3 convolutional layer is applied to the input feature map, reducing its 
dimensionality while preserving spatial information. Subsequently, for each location in the 
resulting feature map, a predefined set of anchor boxes, spanning various sizes and aspect 
ratios, is generated.  

❖ Following this, a 1x1 convolutional layer computes an objectness score for each anchor, 
indicating the likelihood of containing an object.  

❖ Additionally, another 1x1 convolutional layer refines the coordinates of the anchor boxes to 
better align with the objects in the image.  

This multi-step process enables the RPN to propose potential object regions with associated 
confidence scores, serving as an initial step in the object detection pipeline. The RPN is trained with a 
multi-task loss function that combines the classification loss and the regression loss given as 

𝐿RPN =
1

𝑁cls
∑ 𝐿cls(𝑝𝑖, 𝑝𝑖

∗)

𝑖

+ λ
1

𝑁reg
∑ 𝑝𝑖

∗𝐿reg(𝑡𝑖, 𝑡𝑖
∗)

𝑖

 

where 𝑝𝑖  is the predicted probability of anchor 𝑖 being an object, 𝑝𝑖
∗ is its ground-truth label. The 

classification loss is a Binary Cross Entropy loss 

𝐿cls(𝑝𝑖, 𝑝𝑖
∗) = −𝑝𝑖

∗ log(𝑝𝑖) − (1 − 𝑝𝑖
∗) log(1 − 𝑝𝑖) 

And the regression loss is a smooth L1 loss 



D1.2 CONTRAIL TRACKING ALGORITHM 
 
 

   

  

Page | 45 
© –2024– SESAR 3 JU 

  
 

𝐿reg(𝑡𝑖, 𝑡𝑖
∗) = ∑ S𝐿1

(𝑡𝑖𝑗 − 𝑡𝑖𝑗
∗ )

𝑗∈{𝑥,𝑦,𝑤,ℎ}

 

Where  S𝐿1
(𝑥) =

1

2
𝑥2  𝑖𝑓  |𝑥| < 1  and S𝐿1

(𝑥) = |𝑥|  −  
1

2
  otherwise. Also 𝑡𝑖𝑗  and 𝑡𝑖𝑗

∗  are the 

predicted and the ground truth bounding box adjustment for the 𝑗-th coordinate of anchor 𝑖. 

RoI Align and RoI Pooling 

In Mask R-CNN, RoI Pooling and RoI Align are techniques used to extract fixed-size feature maps from 
RoIs. RoI Pooling divides an RoI into a grid of bins and applies max pooling within each bin to generate 
a fixed-size output, but this can cause misalignment due to quantization. RoI Align, on the other hand, 
addresses this issue by using bilinear interpolation to compute the exact values of the input features 
at four sampling points in each bin, preserving spatial alignment. This is particularly important for tasks 
requiring precise localization, such as mask prediction, as it maintains the accurate correspondence 
between the features and the RoIs, leading to better segmentation quality. 

Fully Convolutional Network (FCN) and Fully Connected (FC) Layers 

After RoI Align, the resulting feature maps are flattened into a 1-dimensional vector and passed 
through a series of fully connected layers. This process simultaneously computes the classification 
scores and bounding box coordinates.  

The classification loss is calculated using cross-entropy, which measures the discrepancy between 
the predicted class probabilities 𝑝𝑖  and the actual labels 𝑦𝑖. It is given as  

𝐿cls = − ∑ 𝑦𝑖

𝑖

log(𝑝𝑖) 

The bounding box regression loss typically employs a smooth L1 loss, comparing the predicted 𝑡𝑖 and 
true bounding box coordinates 𝑡𝑖

∗  

𝐿bbox = ∑ smooth𝐿1(𝑡𝑖 − 𝑡𝑖
∗)

𝑖∈{𝑥,𝑦,𝑤,ℎ}

 

Additionally, the feature maps from RoI Align are fed into a series of convolutional layers within a Fully 
Convolutional Network (FCN), which are then upsampled to produce masks that match the original 
image size, preserving spatial information.  

The mask loss is a pixel-wise binary cross-entropy loss that measures the difference between the 
predicted masks 𝑝 and the ground truth masks 𝑦. 

𝐿mask = − ∑(𝑦𝑖𝑗 log(𝑝𝑖𝑗) + (1 − 𝑦𝑖𝑗) log(1 − 𝑝𝑖𝑗))

𝑖,𝑗

 

The final loss is the sum of all these losses 

𝐿 = 𝐿cls + 𝐿bbox + 𝐿mask 
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3.1.5 Contributions in terms of Optimization of the U-Net models 

For both the Mask R-CNN and YOLOv8 models, we utilized their official loss functions because these 
functions are specifically designed to suit the models' architectures and achieve optimal performance. 
Exploring alternative loss functions could potentially disrupt this balance and degrade performance, 
so we have not pursued such alternatives at this time. However, we plan to further explore this topic 
to determine if we can find better alternatives for this specific application. 

For U-Net models, the preferred loss functions to achieve more accurate results, as demonstrated in 
the Google Research competition, include the following or a combination of them: the Binary Cross-
Entropy and Focal Losses (previously explained in the context of the YOLO model), the Dice Loss 
(defined as one minus the Dice score), and the Lovász Hinge Dice Loss. 

This last loss function is a modification of the Lovász Hinge Loss, that is a loss function designed to 
directly optimize a submodular loss function, often the Intersection-over-Union (IoU) score. It 
combines the principles of hinge loss with the Lovász extension. 

❖ The Hinge loss penalizes predictions that are not only incorrect but also those that are correct 
but with low confidence. It ensures that correct predictions with a margin greater than 1 incur 
no loss, while incorrect or low-confidence correct predictions incur a linear loss. For binary 
classification is given as: 

l(𝑦, 𝑓(𝑥)) = max(0, 𝐹(𝑥)) 

Where 𝐹(𝑥) = 1 − 𝑦 ⋅ 𝑓(𝑥), 𝑦 ∈ {−1, 1} is the ground truth label, and 𝑓(𝑥) is the predicted 
score 

❖ The Lovász extension is a mathematical technique used to extend submodular set functions 
to real-valued functions. For instance, directly optimizing IoU is challenging because it is a 
discrete, non-differentiable function. To address this, we use surrogate loss functions that are 
differentiable and can be optimized using gradient-based methods. The Lovász extension helps 
in constructing such surrogate loss functions. 

Formal definition: 

Given a submodular loss function (such as IoU or Dice) 𝐹: 2𝑉 → 𝑅 satisfying the diminishing 
return property (i. e., for every 𝐴 ⊆ 𝐵 ⊆ 𝑉 and 𝑠 ∈ 𝑉 ∖ 𝐵: 𝐹(𝐴 ∪ {𝑠}) − 𝐹(𝐴) ≥ 𝐹(𝐵 ∪
{𝑠}) − 𝐹(𝐵), meaning the marginal gain decreases as the set grows larger)  the Lovasz 

extension 𝐹̂: [0,1]𝑛 → 𝑅 extends this function from the discrete domain of the power set 2𝑉to 
a continuous domain [0,1]𝑛 where 𝑛 = |𝑉| (in this case |𝑉| is the number of pixels in the 
image). Now, for each 𝑥 ∈ [0,1]𝑛 given the permutation σ (sorting the elements of x in 
descending order) the Lovász extension is given as  

𝐹̂(𝑥) = ∑ 𝑥σ(𝑖) (𝐹(𝑆σ(𝑖)) − 𝐹(𝑆σ(𝑖−1)))

𝑛

𝑖=1

 

 where 𝑆σ(𝑖) = {σ(1), … , σ(𝑖)} and 𝑆σ(0) = ∅. 

The Lovász Hinge Loss: for each prediction 𝑖 , compute the margin  𝑚𝑖 as the difference between the 
ground truth value and the predicted score 𝑚𝑖 = 𝑦𝑖 − 𝑝𝑖where 𝑦𝑖  is the ground truth value and 𝑝𝑖  is 
the predicted score. Then, the loss is given as  
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ℒLvs =
1

N
∑ F̂(m(i))

N

i=1

 

where N is the number of classes. 

The Dice Losvasz Hinge Loss is a specific case of this definition in which we choose the submodular set 
function 𝐹 as the Dice loss given by 

F=1 - 𝐹D = 1 −
2 ⋅ TP

2 ⋅ TP + FP + FN
 

 

Our main contribution has to do with the realization that this choice for 𝐹 often leads to a los of false 
positive predictions, as shown in. 

 

Figure 42. A comparison of the predicted probability masks by the U-Net models when using Dice Lovasz 
Hinge Loss and the ground truth mask. 

 Therefore, we chose to optimize the F-Beta Lovasz Hinge Loss with a very low beta parameter in order 
to yield more importance to avoid the generation of false positives. 

The F-Beta Losvasz Hinge Loss is a specific case of this loss function in which the submodular function 
would be the F-Beta loss given as 

𝐹 = 1 − 𝐹β = 1 −
(1 + β2) ⋅ TP

(1 + β2) ⋅ TP + β2 ⋅ FP + FN
 

3.1.6 Transfer Learning 

Using pretrained backbones, particularly those trained on extensive datasets, is a highly effective 
practice in deep learning. A model backbone consists of layers that extract features from input data. It 
benefits greatly from pretraining as it enables the network to learn a wide array of general features, 
which extent from basic edges to complex object structures, leading to improved performance even 
with limited data. Pretrained models also reduce training time and computational requirements since 
they start with a solid foundation of visual understanding instead of being initialized with random 
weights and biases. This approach ensures consistency, reliability, and enhanced generalization in 
model performance.  
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Figure 43. Example of randomly selected image samples from ImageNet 

ImageNet [28], with its dataset of over 14 million labeled images across thousands of categories (see 
Figure 43), is an ideal option for pretraining due to its diversity, large-scale benchmarks, and strong 
community support, making it a cornerstone in advancing computer vision. For this work, we have 
used pretrained weights on ImageNet to initialize the backbones of all the models that are presented 
here. 

3.1.7 Model Ensembling 

Model ensembling is a powerful technique in machine learning that combines the predictions of 
multiple models to improve overall performance. The key reasons why ensembling is beneficial 
include: 

✓ Reduction of Variance: Individual models may be sensitive to the specific data they are trained 
on, which can lead to high variance in predictions. By ensembling the predictions of multiple 
models, the overall variance can be reduced. 

✓ Reduction of Bias: Different models may capture different aspects of the data. By combining 
models, the ensemble can potentially reduce the overall bias compared to a single model. 

✓ Improved Generalization: Ensembles tend to generalize better to unseen data compared to 
individual models. This is because they aggregate the strengths of various models, which can 
lead to better performance on new data. 

✓ Handling Overfitting: While a single model may overfit the training data, an ensemble of 
models is less likely to overfit because it combines predictions from models that may have 
different overfitting behaviours. 

In the context of our work, ensembling is particularly advantageous because we have been training 
multiple models, each with distinct capabilities. By combining these diverse models, we can 
leverage their unique strengths, leading to improved overall performance. Many alternatives exist 
to create an ensemble on top of different trained models, but we have explored mainly two of 
them: 
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Weighted Ensemble 

We aim to find the optimal weights that produce the most effective combination of probability masks 
generated by multiple models. The objective is to maximize a specific evaluation metric, such as the 
Dice Score or the F1-Score, through black box optimization techniques. 

Learning Ensemble 

This approach involves training multiple diverse models, known as base learners, on the same training 
dataset. The predictions from these base learners are then used as input features for a higher-level 
meta-model, which makes the final prediction. The meta-model is designed to optimally combine the 
predictions from the base learners. 

This method shows great promise, as it has the potential to significantly improve the performance 
compared to using individual models or simple weight-averaging. However, we are still in the process 
of deploying this strategy for our application and have not yet completed its implementation. 
Therefore, this remains an area for future development. 

3.1.8 Post-processing Techniques 

When applying the models to detect features in images outside the training dataset, several significant 
issues have been identified in the models' errors: 

-  Lack of temporal consistency 

- Misidentification of dark cloud edges as contrails 

- Mistaken detection of some linear structures in the background as contrails 

- Failure to detect thin linear clouds 

To mitigate these errors, certain postprocessing techniques have proven effective and will be 
elaborated upon below. 

Temporal Smoothing 

To ensure temporal consistency along the detections made in an image sequence, since each frame is 
processed separately by the models we are using at the time, we have decided to make use of optical 
flow techniques to find cloud motion vectors. The concept of optical flow refers to the pattern of 
apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion 
between an observer (camera) and the scene. It provides a way to track the movement of pixels 
between consecutive frames of a video or image sequence. The concept relies on several key 
mathematical principles and assumptions. 
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Figure 44. The optical flow field computed between two consecutive MSG/SEVIRI images 

The optical flow equation given an image 𝐼 is formulated as 

𝑢
∂𝐼

∂𝑥
+ 𝑣

∂𝐼

∂𝑦
+

∂𝐼

∂𝑡
= 0 

Where 𝑢 =
∂𝑥

∂𝑡
  and 𝑣 =

∂𝑦

∂𝑡
. To get to this equation, some assumptions need to be made: 

❖ Brightness constancy assumption: This assumption states that the intensity of a particular 
point in the image remains constant between consecutive frames. Thus, for a pixel at location 
(𝑥, 𝑦) and time 𝑡, denoted as 𝐼(𝑥, 𝑦, 𝑡), its intensity at the subsequent time step,  𝑡 + δ𝑡, 
remains the same at the location (𝑥 +  𝑢, 𝑦 +  𝑣), where u and v represent the optical flow 
vectors. Hence, 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 𝛿𝑡) 

❖ Ignoring higher order terms in Taylor expansion: Using Taylor expansion we get that  

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 𝛿𝑡) = 𝐼(𝑥, 𝑦, 𝑡) + 𝑢
∂𝐼

∂𝑥
+ 𝑣

∂𝐼

∂𝑦
+

∂𝐼

∂𝑡
+ 𝑂(𝑢2, 𝑣2, 𝛿𝑡2, 𝑢𝑣, 𝑢𝛿𝑡, 𝑣𝛿𝑡) 

By ignoring higher order terms and substituting the brightness constancy assumption we get the 
optical flow formula. 

When dealing with small patches of an image, the aperture problem can lead to inaccurate or 
incomplete motion estimates because the motion detected within each small patch (aperture) is 
ambiguous. To overcome the aperture problem, additional constraints and assumptions are necessary 
to obtain a unique solution for the motion vector. The Lucas-Kanade method [29] is a widely used 
approach that addresses this problem. Instead of solving the above equation for each pixel, we 
consider a small window of 𝑛 pixels around the point of interest. This gives us a system of equations 
for all pixels within the window: 
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[
𝐼𝑥(𝑥1, 𝑦1) 𝐼𝑥(𝑥1, 𝑦𝑛)

. . . . . .
𝐼𝑥(𝑥𝑛, 𝑦1) 𝐼𝑥(𝑥𝑛, 𝑦𝑛)

] [
𝑢
𝑣

] = − [
𝐼𝑡(𝑥1, 𝑦1)

. . .
𝐼𝑡(𝑥𝑛, 𝑦𝑛)

] 

That, in compact form, can be written as 𝐴𝑣 = 𝑏 and be approximated using the least squares solution 
𝑣 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏. 

Once we calculate optical flow vectors for the entire image using methods like the Lucas-Kanade 
method, we can anticipate the movement of objects or features in subsequent frames by applying 
these vectors to the current detections or masks. This propagation process allows us to predict where 
objects or features will be in the following frames based on the direction and magnitude of the flow 
vectors. Integrating this propagated information with the detections or masks obtained from the 
current frame ensures consistency and accuracy in object tracking or feature detection across multiple 
frames of the video, enhancing the overall reliability of the system. 

Reduction of False Positive detections 

First, we aim to filter out regions that have been mistakenly detected as contrails but are actually too 
large to be contrails. These could be features such as islands or other elements that sometimes extend 
hundreds of kilometres, achieving sizes sometimes as big as an entire country. Here, in Figure 45, we 
demonstrate the sizes of detected contrails for a given MSG/SEVIRI scene with the aid of a histogram.  

 

Figure 45. Histogram of the sizes of contrails detected by a model 

In order to filter out these large features we threshold those detections that deviate too much from 
the mean of the detection sizes. 



D1.2 CONTRAIL TRACKING ALGORITHM 
 
 

   

  

Page | 52 
© –2024– SESAR 3 JU 

  
 

 

Figure 46. Example of filtering of large detected features 

In the next filtering step, we process the image by separating it into Hue-Saturation-Value (HSV) 
channels (see Figure 47). This colour space helps us better distinguish the features of interest.  

 

Figure 47. Decomposition of the Ash-RGB product into H,S,V channels. 

Since we know that in this false-colour RGB representation, contrails always appear darker than the 
background, we can effectively filter out some linear artifacts. By applying a threshold to the Value 
channel, we can exclude regions that are too light, as they are unlikely to represent pixels belonging 
to a contrail. This helps in eliminating linear shaped structures detected on the ground or at the sea. 

 

Figure 48. Example mask for filtering out lighter value pixels 

The result of applying these two filters to the model detections would look something like shown in 
Figure 49. Although with this method we achieve a good reduction in the false positive detections by 
filtering out non-cloud pixels and non-realistic contrail sized features, we still need to further explore 
alternative techniques to achieve cleaner and finer final predicted masks. 
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Figure 49. The result of applying the two filters to the model detections on two different MSG/SEVIRI scenes 
from the same day. 

One preliminary idea for filtering out cloud edges, which has not yet been tested, involves using spatial 
image gradients. This can be achieved by applying the Sobel operator (for example) to compute the 
gradient magnitudes and directions, highlighting significant changes in intensity (see Figure 50). By 
analysing the pixels along the contours of detected features, we can determine edge characteristics: if 
a detected linear structure has high gradient magnitudes on one side of its contour but low magnitudes 
on the other, it is likely an edge of a cloud rather than a contrail. 

 

Figure 50. Computation of the image gradients using Sobel operator 

Reduction of False Negative detections 

The model's difficulty in detecting contrails that are too thin or lack sufficient contrast with the 
background is primarily due to the low resolution of the MSG/SEVIRI images used for testing, where 
each pixel corresponds to a 3km x 3km area. Consequently, fine details are lost, making it challenging 
to identify narrow or low-contrast contrails. However, this issue is expected to be mitigated at least 
partially with the availability of MTG imagery, which offers higher resolution and thus should 
enhance the model's ability to detect these contrails more accurately. 
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3.2 Physics-Driven Contrail Simulation Model 

This section provides details into the physics-driven simulation process for contrails. 

3.2.1 Schmidt-Appleman criteria 

Conditions for the formation of aircraft contrails are relatively well understood, primarily governed by 
atmospheric thermodynamics as per the Schmidt-Appleman criterion [30] [31] [32]. Among various 
factors contributing to contrail formation, the predominant cause is a thermodynamic phenomenon 
known as "heterogeneous nucleation". This occurs when water vapour emitted by engines condenses 
into supercooled liquid droplets, which subsequently freeze at a lower supersaturation level due to 
the addition of cloud-forming particles (soot) or cloud condensation nuclei. Contrails typically develop 
at high altitudes where the atmosphere is frost-saturated, meaning it is supersaturated with respect 
to ice but subsaturated with respect to water. Persistent contrails occur when aircraft traverse regions 
of airspace where ambient temperature and relative humidity, concerning both water and ice, meet 
specific criteria, expressed through the following inequalities: 

                                                                            {

𝑅𝐻𝑤 > 𝑟𝑐𝑟.

𝑇 < 𝑇𝑐𝑟.

𝑅𝐻𝑖 > 100%
𝑅𝐻𝑤 < 100%

}                                                              (1) 

where, RHw denotes the ambient relative humidity with respect to water, and T is the ambient 
temperature. The relative humidity with respect to ice, RHi can be derived from the following formula: 

𝑅𝐻𝑤 = 𝑅𝐻𝑖

6.0612exp (18.102 𝑇/(249.15 + 𝑇))

6.1162exp (22.5777 𝑇/(273.78 + 𝑇))
 

In addition, Tcr. and rcr. are critical temperature and relative humidity respectively: 

𝑇𝑐𝑟. = −46.46 + 9.43 ln(𝐺 − 0.053) + 0.72𝑙𝑛2(𝐺 − 0.053) + 273.15 

𝑟𝑐𝑟. =
𝐺(𝑇 − 𝑇𝑐𝑟.) + 𝑒𝑠𝑎𝑡

𝑙𝑖𝑞
(𝑇𝑐𝑟.)

𝑒𝑠𝑎𝑡
𝑙𝑖𝑞

(𝑇)
 

In above, the temperature in Celsius. Moreover, we have: 

𝑒𝑠𝑎𝑡
𝑙𝑖𝑞 (𝑇) = 6.0612exp (

18.102 𝑇

249.52 + 𝑇
) 

𝐺 =
𝐸𝐼𝐻2𝑂𝐶𝑝 𝑃

𝜖𝑄(1 − 𝛽)
 

In above, 𝐸𝐼𝐻2𝑂 = 1.25 is water vapuor emission index, 𝑄 = 46 × 106𝐽/𝑘𝑔 is combustion heat per 

unit mass of jet fuel. Moreover, 𝐶𝑝 = 1.004 × 103𝐽/𝑘𝑔. 𝐾 is heat capacity of air. 𝜀 =
𝑀𝐻2𝑂

𝑀𝑎𝑖𝑟
 is the ratio 

of molecular masses and 𝛽 = 0.3 is the average propulsion efficiency of the jet engine. 
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3.2.2 Contrail Cloud Microphysics Model 

Contrail cloud ice particles expand by absorbing excess water vapour from the nearby atmosphere 

when temperatures are below 0°C. The process responsible for this growth through the diffusion of 

water vapour is termed deposition, a widely studied dynamic phenomenon in cloud microphysics [33] 

. This section provides a comprehensive overview of ice particle diffusional growth. It is important to 

note that the current model assumes spherical shapes for all ice particles across the entire contrail's 

lifespan [34]. 

Suppose that (r) (meter) is the single ice particle radius and 𝐷𝑣 (𝑚2 /𝑠) is the diffusivity of water vapour 

at temperature between −40 and 40°C, defined as: 

𝐷𝑣 = 0.211(
𝑇

𝑇0
)1.94(

𝑃0

𝑃
)10−4 

In above, T (in Kelvin) denotes the reference temperature, where T0=273.15 K represents the standard 

temperature, P (in Pascals) signifies the reference pressure, and P0=101325 Pa denotes the standard 

pressure. Further let λ (in meters) represent the mean free path of air molecules, defined as: 

λ =
2𝜇

𝑃√8𝑚𝑎𝑖𝑟
𝜋𝑅𝑇

 

In the above definition, 𝜇 = 1.83 × 10−5 is viscosity of air, 𝑚𝑎𝑖𝑟 = 0.018 kg/mol represents the 
molecular mass of air and 𝑅 = 8.214 𝐽/𝐾. 𝑚𝑜𝑙 is the universal ideal gas constant. 

Next, the adjusted diffusivity of water vapour to account for kinetic correction is determined as 

follows: 

𝐷𝑣
′ =

𝐷𝑣

𝑟(𝑡)
𝑟(𝑡) + ∆𝑣

+
𝐷𝑣

𝑟(𝑡)𝛼
√2𝜋𝑀𝑤

𝑅𝑇

 

where 𝛼=0.7 is deposition coefficient, ∆𝑣= 1.3𝜆 and 𝑀𝑤 = 0.018𝑘𝑔/𝑚𝑜𝑙 is ratio of molecular mass of 
water and dry air.  

We define the adjusted thermal conductivity of water vapour for kinetic correction as: 

 

𝑘𝑎
′ =

𝑘𝑎

𝑟(𝑡)
𝑟(𝑡) + ∆𝑇

+
𝑘𝑎

𝑟(𝑡)𝛼𝜌𝑎𝑖𝑟𝐶𝑝
√2𝜋𝑀𝑤

𝑅𝑇

 

In above, 𝑘𝑎 = 0.025 𝐽. 𝑚/𝑠 is thermal conductivity of water vaper, ∆𝑇= 2.16 × 10−7m is thermal 
accommodation coefficient, 𝜌𝑎𝑖𝑟 denotes air density, and 𝐶𝑝 = 1.004 × 103 stands for the specific 

heat of dry air.  

We denote the saturation vapour pressure with respect to ice by: 
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𝑒𝑠𝑎𝑡,𝑖 = exp (9.55 −
5723.3

𝑇
+ 3.53 log(𝑇) − 0.0073 𝑇) 

Moreover, the saturation vapour pressure with respect to water is expressed as: 

𝑒𝑠𝑎𝑡,𝑤 = 611.2 exp (
17.62 (𝑇 − 273.15)

243.12 + (𝑇 − 273.15)
) 

Specific latent heat of sublimation 𝐿𝑠 is expressed as 

𝐿𝑠 = 103(2834.1 − 0.29 T − 0.004 𝑇2) 

Given the above quantities, we can now compute mass diffusional growth rate of a single ice particle 
by: 

𝑚̇(𝑡) =
4𝜋𝐶𝑆𝑣,𝑖

𝑅𝑇𝜌𝑖

𝑒𝑠𝑎𝑡,𝑖𝐷𝑣
′ 𝑀𝑤

+
𝐿𝑠𝜌𝑖

𝑘𝑎
′ 𝑇

(
𝐿𝑠𝑀𝑤

𝑅𝑇 − 1)
= 𝑓(𝑟, 𝑃, 𝑇) 

where 𝐶 = 1/4𝜋 is capacitance factor of a spherical ice particle, and saturation ratio of water vapour 

with respect to ice is 𝑆𝑣,𝑖 =
𝑒𝑠𝑎𝑡,𝑤

𝑒𝑠𝑎𝑡,𝑖
− 1.  

Since the radius of a single spherical ice particle (𝑟(𝑡)) appears in the formula for 𝑚̇(𝑡),  we need to 
couple the computation of  𝑟(𝑡) to that of  𝑚̇(𝑡). The formula for the radius growth of a single ice 
particle reads: 

𝑟̇(𝑡) =
𝑚̇(𝑡)

4𝜋 𝑟2(𝑡)
 

3.2.3 Particle-Transport Model: 

In this section, we present our methodology to track the persistent contrails over time. To this end, we 
introduce an Eulerian approach which accounts for a general advection-diffusion equation. It is 
assumed that (upon satisfaction of the persistent-contrail criteria), ice particles start to grow right after 
they are injected into the atmosphere. It is noteworthy that a more precise simulation requires that 
one also track the evolution of water vapour temperature. More specifically, the water vapour being 
injected from the aircraft engine is at around 600 0C; hence, the cooling-down process typically occurs 
at some certain distance from the engine, and this by itself mandates the solution of energy-transport 
equation.  Nevertheless, since this distance is quite short (typically below a few hundreds of meters) 
the previous assumption regarding the growth of ice particle right after the injection seems 
reasonable.  

The behaviour of ice-particles can be defined through the following coupling equations: 

𝑢 = 𝑢𝑗𝑒𝑡 + 𝑢̅ 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢) = 0 

𝜕𝜌𝑢

𝜕𝑡
+ ∇. (𝜌𝑢𝑢) = −∇𝑝 + ∇. 𝜏 + 𝜌𝑔 
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𝜕𝜑

𝜕𝑡
+ 𝑢. ∇𝜑 = ∇2(𝐾𝜑) + 𝑆 

In above, 𝑢 represents the velocity of the injecting jet flow from the aircraft engine which is a 
summation of 𝑢𝑗𝑒𝑡 (representing the velocity of the injecting jet flow with respect to wind/background 

speed) and 𝑢̅ (the velocity of wind with respect to a ground observer).   Moreover, 𝜌 represents the 
density of air, t represents time, 𝜏 denotes viscous stress tensor,  𝜑 represents the concentration of 
ice-particles, 𝐾 is the diffusivity coefficient and 𝑆 is to account for any possible source terms. It is 
noteworthy that it is also assumed that 𝑢 is the same as the velocity of resisting air.  

From the above equations, it is evident that the equation representing the concentration of ice 
particles is coupled to the jet equations through 𝑢𝑗𝑒𝑡. Specifically,  𝑢𝑗𝑒𝑡 is significant near the engine, 

i.e., 𝑢𝑗𝑒𝑡 ≫ 𝑢̅ and soon after, 𝑢𝑗𝑒𝑡 decays such that the transport of ice particles is dictated through 𝑢̅. 

In other words, there is a distance after the engine at which 𝑢̅ ≫ 𝑢𝑗𝑒𝑡. Therefore, it seems reasonable 

to focus on the long-term propagation of ice particles through wind. Nonetheless, understanding the 
initial concentration of ice particles necessitates a careful resolution of the jet phenomenon, leading 
to a better understanding of the downwash process.   

As pointed out earlier, the downwash process dominates over only one minute after the injection 
whilst, our target is to model the propagation of ice particles over a wide area, extending to hours. 
Therefore, our current model does not account for the solution of NS equations. It is also noteworthy 
that beside a careful solution to the above coupled system of equations is computationally expensive, 
it entails many computational and theoretical challenges, and it is, by itself, an active area of research.  

Therefore, the focus of the present model is on the resolution of ice-particles concentration through 
the advection-diffusion equation where the transport phenomenon is dictated by wind. However, in 
order to (naively) account for the jet velocity, we assume (through the available analytical solution for 
the incompressible radial jet flow) that its decaying velocity is proportional to the inverse of the 
distance from the engine location.  

Having considered the above discussion, we express our model by expanding the advection-diffusion 
equation as: 

𝜕𝜑

𝜕𝑡
+ (𝑤𝑥 + 𝑢𝑥,𝑗𝑒𝑡)

𝜕𝜑

𝜕𝑥
+ (𝑤𝑦 + 𝑢𝑦,𝑗𝑒𝑡)

𝜕𝜑

𝜕𝑦
+ (𝑤𝑧 + 𝑢𝑧,𝑗𝑒𝑡 + 𝑢𝑠)

𝜕𝜑

𝜕𝑧
= 𝑘𝑥

𝜕2𝜑

𝜕𝑥2  +𝑘𝑦
𝜕2𝜑

𝜕𝑦2 + 𝑘𝑧
𝜕2𝜑

𝜕𝑧2 + 𝑆 

In above, 𝑤𝑥 , 𝑤𝑦 and 𝑤𝑧 ≪ 1 are wind components. We assume that persistent contrails are formed 

during the cruise phase of the flight. Therefore, 𝑢𝑧,𝑗𝑒𝑡 = 0. Moreover, the induced jet velocity is 

computed by: 

𝑢𝑥,𝑗𝑒𝑡 =
𝑉𝑒𝑥𝑖𝑡cos (𝜃)

𝑟
,             𝑢𝑦,𝑗𝑒𝑡 =

𝑉𝑒𝑥𝑖𝑡sin (𝜃)

𝑟
,         𝑟 = ||𝑋 − 𝑋𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡||. 

where X:=(x,y,z).  

Moreover, 𝑢𝑠 is the settling velocity, defined as [35]: 

𝑢𝑠 = 𝑓𝑠

(𝜌𝑖 − 𝜌𝑎𝑖𝑟)𝑑𝑝
2

18𝜇
g sin (atan (

𝑤𝑦

𝑤𝑥
)) . 

where dp represents the diameter of ice particles.  
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The order of magnitude for 𝑢𝑠 ≪ 1, makes it possible to ignore the advection in the ‘z’ direction. 
Moreover, for the sake of the computational speed, we further disregarded the diffusion term in ‘z’ 
direction to construct a 2D model. It is noteworthy that the propagation of ice-particles in ‘z’ direction 
may be tracked separately either through a Lagrangian approach or empirical estimations.    

The main term in the above advection-diffusion equation is the source term (S). More specifically, this 
term includes ice-particle growth (which is the main term contributing to persistent contrails), as well 
as some slip mechanisms such as inertia, magnus and thermophoresis effects [36]. Therefore, we can 
write: 

𝑆 = 𝑆𝑖 + 𝑆𝑡 + 𝑆𝑚 + 𝑆𝑔𝑟𝑜𝑤𝑡ℎ 

In above, 𝑆𝑖 ∝ π𝑑𝑝𝜇||𝑢|| is the inertia due to the Stokes friction, 𝑆𝑚 ∝ ∇𝑢 is the slip mechanism due 

to the magnus effect,  𝑆𝑡 = 𝐷𝑡∇φ
∇𝑇

𝑇
 is the slip mechanism due to thermophoresis (soret) effect, and 

𝑆𝑔𝑟𝑜𝑤𝑡ℎ =
𝑓(𝑟,𝑃,𝑇)𝑁𝑝

∆𝑥∆𝑦(1)
  (𝑁𝑝 being the number of ice particles after the downwash process [34]) is the 

main source term accounting for the growth of ice-particles leading to persistent/growing particles.  

Comment 1: upon performing an order of magnitude analysis [36], it becomes apparent that the slip 
mechanism due to inertia is negligible for 𝑑𝑝 < 10−6m. This term can become significant in long terms. 

Our simulations show that upon setting the initial ice-particle diameter as 𝑑𝑝,𝑖 = 10−6𝑚 ( [34]), a 

persistent growth after about 2 hours of exposure to T=-150C (which gives the maximum growth rate) 
leads to a final ice-particle diameter of about 𝑑𝑝,𝑓 = 5 × 10−6𝑚 . In other words, the source term due 

to the inertia is negligible for many scenarios.  

Comment 2: Magnus and thermophoresis effects can contribute to the propagation of ice particles. 
Nevertheless, at this stage, it appears that the experimental data determining the diffusion rates due 
to these terms is not available.   

3.2.4 Numerical Solution to Particle-Transport Model: 

Since the considered advection-diffusion equation is time-dependent encompassing source terms and 
variable velocity fields, deriving an analytic solution seems beyond the state of the art on this topic. 
Therefore, at this point, numerical solutions are more appropriate.  

We solve the advection-diffusion equation employing Alternating Directional Implicit (ADI) which is 
proved to be unconditionally-stable (not relying on CFL condition) for linear transport equations. 
Furthermore, ADI approach provides an accurate temporal resolution.  

Here, we present an overview of the ADI approach. 

First Fractional Step: 

• Treating the x-direction implicitly and the y-direction explicitly: 

𝜑𝑖,𝑗
𝑛+1/2

− 𝜑𝑖,𝑗
𝑛

∆𝑡/2
+ (𝑤𝑥 + 𝑢𝑥,𝑗𝑒𝑡)

𝜕𝜑
𝑖,𝑗

𝑛+
1
2

𝜕𝑥
+ (𝑤𝑦 + 𝑢𝑦,𝑗𝑒𝑡)

𝜕𝜑𝑖,𝑗
𝑛

𝜕𝑦
= 𝑘𝑥

𝜕2𝜑
𝑖,𝑗

𝑛+
1
2

𝜕𝑥2
+ 𝑘𝑦

𝜕2𝜑𝑖,𝑗
𝑛

𝜕𝑦2
+ 𝑆𝑖,𝑗

𝑛  

Second Fractional Step: 
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• Treating the y-direction implicitly and the x-direction explicitly: 

• 
𝜑𝑖,𝑗

𝑛+1−𝜑𝑖,𝑗
𝑛+1/2

∆𝑡/2
+ (𝑤𝑥 + 𝑢𝑥,𝑗𝑒𝑡)

𝜕𝜑
𝑖,𝑗

𝑛+
1
2

𝜕𝑥
+ (𝑤𝑦 + 𝑢𝑦,𝑗𝑒𝑡)

𝜕𝜑𝑖,𝑗
𝑛+1

𝜕𝑦
= 𝑘𝑥

𝜕2𝜑
𝑖,𝑗

𝑛+
1
2

𝜕𝑥2 + 𝑘𝑦

𝜕2𝜑𝑖,𝑗
𝑛+1

𝜕𝑦2 + 𝑆𝑖,𝑗
𝑛+1/2

 

We use a central difference scheme for the second derivatives and forward (upwind) schemes for the 
first-order derivatives and the discrete problem is reduced to a 2-step triangular system which is solved 
using Tridiagonal matrix algorithm (Thomas/TDMA) [37].  

Estimating Wind, Temperature, and Relative Humidity from Reanalysis Data: 

The available data from Reanalysis does not have adequate resolution for particle-tracking algorithm. 
Therefore, before incorporation, wind field, together with temperature and relative humidity should 
be reconstructed for the considered domain. 

To this end, we adopt a neural network model to reconstruct the above quantities. Each quantity is 
modelled by a simple 2-layer fully-connected network as follows: 

𝑞(𝑋) = 𝑊𝑞,2𝑓(𝑊𝑞,1𝑋 + 𝑏𝑞) 

In above, q denotes the modelled quantity, X:=(x,y,z,t) is the input vector, 𝑊𝑞,1 ∈ 𝑛 × 4, 𝑏𝑞 ∈ 𝑛 × 1 

are weights and biases of the neural network and 𝑊𝑞,2 ∈ 1 × 𝑛 is the scaling vector. Moreover we 

choose the following activation function which is more suited for neural approximations: 

𝑓(𝑝) = { 
𝑝2               𝑝 > 0

−𝑝2              𝑝 < 0
} 

Comment 3: In order to model wind consistent manner, one needs to ensure that the wind 
components adhere to NS equations. This is because wind, by itself, can be considered as an 
incompressible flow. Such simulations involving some equations (to be satisfied) are typically referred 
to as Physics-Informed Neural Networks (PINN). However, due to the computational cost of a complete 
PINN simulation, the current model only accounts for the continuity equation. Therefore, through 
backpropagation, we first compute the derivatives of wind components and extend the loss function 
(which is an Euclidian norm, measuring the difference between the available data and neural output) 

by a term representing minimization of |
𝜕𝑤𝑥

𝜕𝑥
+

𝜕𝑤𝑦

𝜕𝑦
|  over the entire domain.   

Aircraft Repositioning 

Since aircraft is cruising constantly, its position needs to be updated at each time step through the 
Kinematic flight dynamics: 

𝑑𝑥𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡

𝑑𝑡
= 𝑉𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 cos 𝜃 + 𝑤𝑥(𝑥, 𝑦, 𝑧, 𝑡) 

𝑑𝑦𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡

𝑑𝑡
= 𝑉𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 sin 𝜃 + 𝑤𝑦(𝑥, 𝑦, 𝑧, 𝑡) 
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The above equations are solved using R-K 4th -5th order. 
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4 Results  

4.1 Data-Driven Contrail Detection Models 

In this section we will introduce the metrics used for evaluating the performance of the different 
models and the quantitative results obtained based on this metrics. We also provide some qualitative 
results I which the contrails detected by the images are examined and a discussion of the qualitative 
performance and in which situations the models perform well 

4.1.1 Metrics used for evaluation 

Segmentation Metrics 

To evaluate the performance of the models in terms of semantic segmentation, specifically for the task 
of classifying each pixel as either a contrail or not a contrail. These metrics help us understand how 
well the models are performing the segmentation task. The most relevant metrics we focus on are 
precision and recall. Additionally, we provide the F1 score and Dice score, which evaluate the balance 
between precision and recall. Here is a more detailed explanation of each of them: 

• Precision: It is defined as the ratio of true positive (TP) predictions to the total number of 
positive predictions (true positives and false positives, FP). The formula is given as  

Precision =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

In the context of our problem, it quantifies the proportion of pixels predicted by the model to be 
part of a contrail that actually belong to a true contrail. 

• Recall: Also known as sensitivity or true positive rate, measures the ability of the model to identify 
all the existing pixels belonging to instances. It is defined as the ratio of true positive predictions 
to the total number of actual positives (true positives and false negatives, FN). The formula is given 
by 

Recall =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

In the context of our problem, it represents the proportion of contrail pixels that have been 
correctly detected by the model out of all the pixels that actually belong to a true contrail. 

• F1-Score: It is the harmonic mean of precision and recall. It provides a single metric that balances 
the trade-off between precision and recall, especially when the two values are not equal. A high 
F1 score indicates that both the and recall are reasonably high. It can be formulated as 

F1 Score = 𝟐 ⋅
Precision ⋅ Recall

Precision + Recall
 

• Dice Score: It is defined as twice the area of overlap between the predicted and true regions 
divided by the total number of pixels in both the predicted and true regions. The Dice score ranges 
from 0 to 1, where 1 indicates perfect overlap. The formula is  
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Dice Score =
𝟐 ⋅ 𝑻𝑷

𝟐 ⋅ 𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵
 

The Dice score is often interpreted in terms of spatial overlap between segments, making it more 
intuitive for tasks where the goal is to measure how well regions in images match. The F1 score, 
while mathematically similar, is interpreted more broadly in terms of balancing precision and 
recall. 

Keypoint Detection Metrics 

To assess the effectiveness of the Keypoint Detection models, our evaluation will primarily focus on 
precision, recall, and F1 scores, which are described similarly to the segmentation metrics. However, 
in this case, we measure the agreement between the predicted keypoints and the ground truth 
keypoints, rather than considering all the pixels defining each contrail.  

In this context, the most indicative metric is likely the mean Average Precision (mAP). This metric 
quantifies the precision-recall trade-off across all thresholds and provides a comprehensive measure 
of model performance. Specifically, mAP calculates the average precision across all classes, providing 
a single value that summarizes the model's ability to accurately detect keypoints across the dataset. 
This metric is formulated as follows: 

• Mean Average Precision: The mAP for keypoint detection is computed as the mean of the Average 
Precision (AP) scores for each keypoint. It is given as  

mAP =
𝟏

𝑲
∑ AP𝒌

𝑲

𝒌=𝟏

 

where 𝐾 is the total number of keypoints, and AP𝑘is the Average Precision for the 𝑘-th keypoint. 
To calculate AP𝑘, we integrate the precision-recall curve for each keypoint: 

AP𝑘 = ∫ P𝑘(R)
1

0

 𝑑R 

4.1.2 Model Qualitative Results 

Here we are going to present some visual results obtained when making predictions on images of the 
validation set with the different models to get a better understanding of their performance. 

KeyPoint Detection Results 

In this section, we present the visual results obtained using the best-performing keypoint detector, 
specifically the YOLOv8-pose model with 2-keypoint labels. The results, both those shown here and 
those examined separately, indicate that the model demonstrates high precision, meaning that the 
detected objects are very likely to be contrails. However, the recall is comparatively lower, indicating 
that the model fails to detect many contrails. 

Here in Figure 51 and Figure 52 we can see a comparison between the ground truth labels of 4 different 
frames within the validation set, along with the predicted labels and the confidence score of each of 
them. 
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Figure 51. . Ground truth contrail labels with 2 keypoints 

 

Figure 52. Contrails detected with YOLOv8-pose 

Segmentation Results: 

Here, we present several examples of the predictions made by each model and compare them with 
the ground truth results. Although the actual output of each model is a probability map, we have 
thresholded these for clearer visual interpretation. 

Overall, U-Net models produce the most accurate predicted masks. For instance, see the following 
figures:  

 

 

Figure 53. Masks generated by the different models and compared against the ground truth mask. Here are 
shown examples in which U-Net models outperform the rest. 

Although they often perform better in many situations, it appears that when the contrails are clearly 
visible in the image, all models are able to segment them accurately, as shown in the following figures. 



D1.2 CONTRAIL TRACKING ALGORITHM 
 
 

   

  

Page | 64 
© –2024– SESAR 3 JU 

  
 

 

 

Figure 54. Masks generated by the different models and compared against the ground truth mask. Here are 
shown examples in which all of the models have a good performance. 

However, we cannot conclude that only U-Net models should be considered for predictions. Although 
the other models generally don’t perform as good, there are scenes in which Mask R-CNN or YOLO 
outperform the U-Net models, as shown in the following figures. 

 

 

Figure 55: Masks generated by the different models and compared against the ground truth mask. Here are 
shown examples in which Mask-RCNN outperform the rest of the models 

This indicates the potential advantage of combining or ensembling the outputs of all models to achieve 
the best possible results. 
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4.1.3 Model Performance Results 

KeyPoint Detection Results: 

We trained YOLOv8-pose for keypoint detection on our dataset. The keypoint detection labels were 
generated using a methodology that converts binary masks into polygons, but excludes the final 
contouring steps, retaining only the detected segments.  

We experimented with various numbers of keypoints to define each contrail segment. According to 
the metrics, the results appear suboptimal. However, visual inspection suggests the performance may 
not be as poor as indicated by the metrics, suggesting that an alternative evaluation method might be 
necessary.  

The current results are as follows: 

A) Contrails defined by two keypoints: Here we expose the results obtained when training the model 
with 2-keypoint labels as shown in Figure 56. 

 

Figure 56: 2-keypoint contrail labels. 

The precision-recall curve illustrates the trade-off between these two metrics. At a confidence 
threshold of 0.5, the model achieves its highest mAP of 49.9%. This indicates that, at this threshold, 
the model balances precision and recall optimally, capturing a significant portion of true positives while 
maintaining a reasonable level of accuracy in its predictions. The F1-score achieves its best 
performance of 53% by setting the confidence threshold to a value of 0.186. 

 

Figure 57: Precision-Recall Curve (left) and F1-score Curve (right) of YOLOv8-pose with 2 keypoint labels 
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The evolution of the loss functions and various metrics across epochs is depicted in. During training, 
the loss functions decrease monotonically, indicating that the model is effectively learning from the 
data. However, during validation, the loss functions exhibit a monotonic decrease only in the initial 
stages, suggesting that the model's learning effectiveness diminishes over time. The performance 
metrics, while generally increasing monotonically during training, tend to plateau and fluctuate around 
certain values, indicating that the model has reached its capacity to learn further and, in some cases, 
may even begin to overfit, leading to a decline in performance. 

 

Figure 58: Evolution of the loss functions and the different metrics across epoch both in the training and 
validation set for YOLOv8-pose with 2 keypoints. Here B stands for Bounding Box results and P for Pose or 
Keypoint Detection results. 

B) Contrails defined by three keypoints: Here we expose the results obtained when training the 
model with 3-keypoint labels as shown in Figure 59. 

 

Figure 59: 3-keypoint contrail labels 

The precision-recall curve indicates that at a confidence threshold of 0.5, the model achieves its highest 
mAP of 46.6%, which is 3.3% lower than the previously observed value. Additionally, the F1-score 
reaches its peak performance at 50% when the confidence threshold is set to 0.174. This decline in 
metrics suggests that the model's performance is hindered by the increased complexity of predicting 
a greater number of keypoints, resulting in lower overall accuracy. 
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Figure 60: Precision-Recall Curve (left) and F1-score Curve (right) of YOLOv8-pose with 3 keypoint labels 

During training, the loss functions decrease consistently, indicating effective learning. However, in validation, 
they only decrease initially, suggesting reduced learning effectiveness over time. Performance metrics 
fluctuate, generally increase, but eventually plateau and sometimes decline, indicating potential overfitting and 
the model's limited generalization to validation data.

 

Figure 61: Evolution of the loss functions and the different metrics across epoch both in the training and 
validation set for YOLOv8-pose with 3 keypoints. Here B stands for Bounding Box results and P for Pose or 
Keypoint Detection results. 

C) Contrails defined by 20 keypoints: Here we expose the results obtained when training the model 
with 20-keypoint labels as shown in Figure 62. 

 

Figure 62: 20-keypoint contrail labels. 

The precision-recall curve indicates that at a confidence threshold of 0.5, the model achieves its highest 
mAP of 35.4%, which is 11.2% lower than the previously observed value. Additionally, the F1-score 
reaches its peak performance at 44% when the confidence threshold is set to 0.286. This demonstrates 
that increasing the number of keypoints leads to a decline in overall performance. A potential reason 
for this phenomenon could be related to the methodology used to retrieve the segments that best 
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describe each contrail. Given that there are multiple ways to select these segments, the model might 
produce different segment alternatives. As a result, when computing the metrics, the variability in 
segment predictions leads to significantly lower performance scores. 

 

Figure 63: Precision-Recall Curve (left) and F1-score Curve (right) of YOLOv8-pose with 20 keypoint labels 

The loss and metric functions generally follow similar patterns as observed in previous cases. However, 
we note that the model ceased training after 40 epochs due to the early stopping criterion, which 
was set at 20 epochs. This means the training halted because the model's performance did not improve 
during these 20 consecutive epochs and instead showed only fluctuations. 

 

Figure 64. Evolution of the loss functions and the different metrics across epoch both in the training and 
validation set for YOLOv8-pose with 20 keypoints. Here B stands for Bounding Box results and P for Pose or 
Keypoint Detection results. 

Segmentation Results: 

Before evaluating the performance of the YOLOv8 and Mask R-CNN models in terms of semantic 
segmentation, it's important to note that they are not encoder-decoder networks. Unlike encoder-
decoder networks that output a matrix with the same dimensions as the input image, this model uses 
a series of fully connected layers at the end. As a result, it outputs vectors representing the contours 
of detected contrail polygons along with the probability of each feature being a contrail. To evaluate 
segmentation performance, we need to create a contrail probability map from these contrail polygons. 
The way we do this is by following these steps: 

1. Probability mapping: For each detected contrail polygon, we use the associated probability 
values to create a mask. 
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2. Instance mask retrieval: We plot each segmented contrail on a zero-valued mask, filling 
the entire segmented area with the corresponding probability values. 

3. Combine Masks: We repeat this process for all detected contrail polygons and add all the 
individual masks together. 

4. Clip Values: Finally, we clip the resulting added values to the 0-1 interval to ensure they 
represent valid probabilities. 

This process allows us to generate a comprehensive contrail probability map from the model's outputs, 
facilitating the evaluation of its performance in semantic segmentation and allowing the comparison 
with other semantic segmentation models. 

A) Performance of the CoaT U-Net model: 

The results of the U-Net model trained with a CoaT backbone are shown in Figure 65. 

 

Figure 65. Metrics obtained with the CoaT-Unet model 

The plots indicate that this model can achieve near-perfect recall by setting a low confidence 
threshold, which results in very low precision. This means the model can potentially detect all contrails 
in the scene but will also produce a significant number of false positives. However, by setting the 
confidence threshold to 0.31, a good balance between precision and recall is achieved, resulting in an 
F1 Score of 85.72% and a Dice Score of 78.24%. These dice score for a model trained on this data 
represents a strong performance, surpassing state-of-the-art performance results. 

The computational time for training 20 epochs was approximately 24 hours, running on a single 
NVIDIA RTX 4090 GPU with 12GB of memory.  
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B) Performance of the NextViT U-Net model 

The results obtained after training a U-Net model with NextViT backbone outperform the previous 
results obtained with the CoaT backbone network, as can be seen in Figure 66. 

 

Figure 66. Metrics obtained with the NextViT U-Net model 

The interpretation of the results is similar to the previous case, with the notable improvement that the 
model now achieves an F1-score of 86.75% and a Dice Score of 80.55%. These enhanced metrics 
indicate an even better balance between precision and recall, and the high Dice Score suggests 
excellent spatial overlap between the predicted and ground truth masks. This performance in terms 
of the Dice Score is considered state-of-the-art, reflecting significant advancements in the model's 
ability to accurately detect and delineate contrails. 

The computational time for training 20 epochs was approximately 24 hours, running on a single NVIDIA 
RTX 4090 GPU with 12GB of memory. 

C) Performance of the Yolov8 model 

The best metrics obtained with this model when we evaluate it over the validation set of the 
OpenContrails Datset are shown in Figure 67. 

The results indicate that the model's recall remains consistently high across varying confidence 
thresholds, suggesting its robustness in capturing positive instances regardless of confidence levels.  

Conversely, precision improves notably with higher confidence thresholds, indicating the model's 
increased selectivity in true positive predictions.  
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Figure 67. Metrics obtained with the YOLOv8 model 

The Dice score demonstrates good overlap between predicted and ground truth masks at a relatively 
high confidence threshold (0.61).  

However, the notably higher F1 score compared to the Dice score at the same confidence level 
suggests that the model excels more in accurately classifying pixels as belonging to a contrail or not 
than in precisely delineating the shapes of segmented objects, emphasizing its strength in pixel-wise 
classification accuracy. 

The computational time for training 120 epochs was approximately 40 hours, running on a single 
NVIDIA RTX 4090 GPU with 12GB of memory. 

D) Performance of the Mask-RCNN model 

The metrics obtained with the Mask-RCNN model when evaluating it over the validation set of 
OpenContrails Dataset are shown in Figure 68. 

The evaluation of this model reveals a noteworthy pattern: while its recall consistently hovers around 
71% across all confidence thresholds, indicating its capability to capture positive instances, its 
precision score has a strong dependence on the confidence threshold selected.  

This suggests that the model tends to generate numerous false detections at low confidence levels, 
while it’s capable to maintain balance at high threshold. In essence, has a good performance in both 
Dice Score and F1 Score, however, in comparison with the previous models it has a worse 
performance.  

The computational time for training 2,500 epochs was approximately 20 minutes, running on a single 
NVIDIA RTX 4090 GPU with 12GB of memory. 
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Figure 68. Metrics obtained with the Mask R-CNN model 

E) Performance of the Weighted Ensemble Model: We utilized black box optimization to determine 
the optimal weights for maximizing the Dice Score. The optimal weights identified were 0.8 for the 
NextViT model, 0.1 for CoaT, and 0.05 each for Mask R-CNN and YOLOv8. The results are shown in 
Figure 69 

However, this combination only improved the Dice Score by 0.01% compared to the best-performing 
single model. Consequently, the computational cost of using all four models outweighs the minimal 
performance gain. Further exploration of ensembling techniques is necessary to achieve a substantial 
performance improvement.  
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Figure 69. Metrics obtained with the Weighted Ensemble model 

4.1.4 Comparison across all trained models 

For a more comprehensive understanding of how the various models compare in terms of their 
performance according to the dice score functions, we have made a unique plot shown in Figure 70. 

 

Figure 70. Comparison between of the Dice Score as a function of the probability threshold across models 
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By selecting the threshold that optimizes the dice score for each model, we obtain the values displayed 
in Figure 71. 

 

Figure 71. Best Dice Score for each model for a selected threshold 

4.1.5 Comparison with Previous Results 

The results of the top-performing model within the Google Research Kaggle competition [38] are 
shown in Figure 72. We notice that the highest score, reaching 71.6%, is achieved by a single model. 
Interestingly, our YOLOv8 model nearly matches this score, while two other models (CoaT and 
NextViT U-Nets) actually exceed it. 

 

Figure 72. Dice Score of MaxViT U-Net 1st place solution of the Google Research competition 

Our implementation of the Coat U-Net and NextVit U-Net models was based on the approach used by 
the team that achieved the 2nd position on the leaderboard. These results are displayed in Figure 73, 
along with the results obtained with several other models. 
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Figure 73. Dice Score of the models presented in the 2nd place solution of the Google Research competition 

We surpassed the performance of the two top-performing models by reconsidering our optimization 
strategy. Initially, we minimized the Dice Lovasz Loss to strike a balance between precision and recall. 
However, upon observing the results, we noticed that the models tended to prioritize higher recall.  

To address this, we revamped the loss function into a Beta Lovasz Hinge function, assigning a 
significantly lower weight to recall maximization and emphasizing precision maximization. We set the 
Beta parameter to a value of 0.1, as smaller values caused gradient vanishing while higher values 
degraded performance. This adjustment led to improved results.  

4.1.6 Preliminary experiments with European data 

To evaluate the ability of our models to detect contrails across various data sources covering the 

European geographical extent, we conducted preliminary experiments using MSG/SEVIRI data. 

Originally, we planned to use MTG data for these experiments because it offers better resolution and 

same properties as the GOES-16 images on which the models have been trained. However, the 

availability of MTG data has been delayed due to ongoing corrections needed to address artifacts 

found in the initial test images.  

Experiment conducted on the 25th of September 2023 

The initial experiment conducted with data covering European regions focused on areas including the 
northern Spain, Italy, France, and several other northern countries within specific latitude and 
longitude coordinates. This experiment took place on September 25, 2023, between 8:30 am and 10:30 
am.  

The selection of this date, time, and location was primarily motivated by the visibility of a contrail 
observed in Toulouse through ground camera observation. This contrail was observed from around 9 
am to 10 am, providing a ground truth observation against which we could compare the data obtained 
from MSG/SEVIRI images. In Figure 74, the region of coverage is depicted along with the precise 
location of the camera and the detected contrail, providing visual context for the experiment. 
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Figure 74. Area of coverage of the 1st experiment conducted in Europe along with the location of the ground 
camera contrail observation.  The scene is an Ash-RGB MSG/SEVIRI image. 

In this phase of the study, we utilized various models trained on GOES-16 images to identify and 

analyse contrails present in the imagery. These models were employed to detect existing contrails and 

compare them with labelled contrails within the images, as well as with the contrail observed in 

Toulouse through ground camera footage.  

The outcomes of these detection efforts are depicted in Figure Y. The key observations derived from 
these results are as follows: 

❖ The contrail observed in the ground camera image does not appear visible in the MSG/SEVIRI 
image (see Figure 75) and consequently remains undetected by the model. This discrepancy 
is likely due to the size of the contrail. It's important to note that each pixel in the false colour 
RGB image corresponds to an area of 3km x 3km, which means that if the contrail's width is 
smaller than this size, it becomes challenging for the model to detect it. 

❖  

 

Figure 75. MSG/SEVIRI Ash-RGB image on the 25/09/2023 with a red circle covering Toulouse. 

 
❖ Although the model identifies several contrails, it also generates numerous false positives. To 

address this issue, the post-processing techniques outlined earlier have been applied to the 
images. 

Some visual examples of the contrails detected are shown in Figure 76. 
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Figure 76. Contrails detected by the models on the 25/09/2023 in MSG/SEVIRI Ash-RGB images. 

Experiment Conducted on the 26th of January 2024 

In the context of this second scenario, we have selected it because several contrails were detected by 
visual inspection (see Figure 77) on the images and therefore, we wanted to contrast our observations 
with the capabilities of the model.  

The experiment was conducted on 26th of January of 2026 from 7:30am to 11:30am, in the Spanish 
region mainly, as well as north Africa and other countries in middle-Europe. 

 

Figure 77. An example of contrails labelled on an MSG/SEVIRI Ash-RGB image on the 26/01/2024 by visual 
inspection. 
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The contrail detection results are displayed in the figure. Despite our postprocessing efforts to 
eliminate false detections, further refinement is necessary to achieve the most reliable predictions. 

 

 

 

Figure 78. Contrails detected by the models on the 26/01/2024 in MSG Ash-RGB images. 

Figure 79 demonstrates how incorporating optical flow to propagate masks from previous steps and merging 
them with detections at each time step can ensure consistent model detections across a sequence of images. 

 

Figure 79. Ensuring temporal consistency throughout an image sequence making optical flow corrections on 
the MSG Ash-RGB images from the 26/01/2024. 
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4.2 Physics-Driven Contrail Simulation Model 

In this section, we present some simulation results for non-persistent and persistent contrails and the 
latter is (roughly) compared against that of CoCip model. 

4.2.1 non-persistent contrails 

Non-persistent contrail simulation 
refers to the contrails that dissipate 
soon after they are formed. This is 
because the Schmidt-Appleman 
criteria is not fully satisfied. This 
situation can be simulated by 
deactivating the source term 
representing the growth of ice 
particles.  

Figure 80 shows the evolution of a 
one single contrail for a hypothetical 
flight with a wind field randomized 
for about 30% about the available 
wind data. Figure 81 and Figure 82 
exhibit the results of a simulation at 
10km level flight with standard 
atmospheric quantities and real 
wind data above Madrid (30-30 
squared kilometres). Specifically, these figures depict the evolution of non-persistent overlapping 
contrails due to the flight of 4 aircraft.  

 

 

Figure 80:  Single non-persistent contrail 

 

Figure 81: non-persistent contrails from 4 aircraft 
after 90 seconds 

Figure 82: non-persistent contrails for 4 aircraft after 
150 seconds 
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4.2.2 Persistent contrails 

As previously mentioned, persistent contrails are ice particles released in areas with conditions 
conducive to their growth.  presents a simulation for a hypothetical flight from Gran Canaria to Madrid 
at 8 a.m. on February 12, 2023. This figure shows that after one hour of flight, the aircraft is just 
beginning to encounter an area prone to the formation of persistent contrails. Figure 81 extends this 
simulation by another hour. Figure 82 displays a similar simulation (for the same flight and time) using 
CoCiP. Although the exact time span used in the CoCiP algorithm is unclear, a comparison between 
Figure 81 and Figure 82 already reveals a fair level of correspondence. 

  

Figure 81: persistent contrails for a single flight after about 1 hour (colourbar: kg/m3) 
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Figure 82: persistent contrail for a single flight after about 2 hours 

 

Figure 83: contrail’s energy forcing from CoCiP model  

4.2.3 Random Traffic: 

A simulation was carried out for 200 flights over an area with 1000 km-by –1000 km size and Madrid 
at its centre on 24th, Dec., 2023 at 10 km altitude. The simulation highlights the spotted regions of 
growing/persistent contrails after half an hour flight. Specifically, Figure 84 shows the accumulation of 
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all generated contrails after half an hour flight, while Figure 85 shows the spotted regions where some 
of those contrails have met the specific conditions to grow.  

 

Figure 84: Contrails generated by a traffic after about 30 minutes flights 

 

Figure 85: Persistent contrail spots after about 30 minutes (axes are in meters) 
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5 Conclusions 

The work presented in this deliverable has successfully met the primary goal of developing a model 
capable of detecting contrails in satellite imagery and another model for characterizing the evolution 
of contrails into aviation-induced cloudiness over time.  

We have achieved nearly a 10% improvement in terms of the dice score on the contrail detection 
models. We have also outlined all the required pre- and post-processing steps necessary to attain 
optimal performance. 

Additionally, we have demonstrated that these models can be directly applied to European data, 
though quantitative validation of detections using MSG/SEVIRI images is still pending. This labelling 
effort will be undertaken and included in the next deliverable. We anticipate that the results may not 
be as strong as those from GOES-16 scenes due to the lower resolution of MSG/SEVIRI scenes. 
However, once MTG data becomes available, the performance is likely to match that of the GOES-16 
data.  

Regarding the physics-driven contrail simulation model, we have implemented a novel transport 
equation aimed at addressing existing slip mechanisms, thereby simulating the advection-diffusion of 
ice particles. It is noteworthy that the propagation of persistent contrails is governed by a 
comprehensive advection-diffusion equation. A thorough comprehension of this equation is 
imperative for more precise simulations of persistent contrails and, consequently, radiative forcing. 
Although the presented model still necessitates refinement and extension at an algorithmic level, we 
have observed a reasonable level of consistency compared to other similar methods such as CoCiP. 
The subsequent steps involve enhancing the developed code in the following aspects:  

1- Physics representation: This implies updating the model to incorporate additional physical 
processes.  

2- Large-scale simulation: Currently, the computational time required for tracking contrails over 
expansive domains, such as the entire Europe, is substantial. Efforts are underway to devise 
strategies for enhancing algorithm efficiency in this regard. 
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7 List of acronyms  

Acronym Description 

ADI      Alternating Directional Implicit 

ADS-B Automatic Dependent Surveillance-Broadcast 

AIC Aviation Induced Cloudiness  

AP Average Precision  

AVHRR Advanced Very-High-Resolution Radiometer 

BT Brightness Temperature 

BTD Brightness Temperature Difference  

CDA Contrail Detection Algorithm 

CIoU  Complete Intersection over Union 

CNN Convolutional Neural Network 

CoaT Co-Scale Conv-Attentional Image Transformer 

CO2 Carbon Dioxide 

DFL Distribution Focal Loss 

ECMWF European Center for Medium-Range Weather Forecasts 

ERA5 5th Generation of ECMWF atmospheric reanalysis  

ELAN Efficient Layer Aggregation Network 

EMHSA Efficient Multi-Head Self-Attention 

ERF Effective Radiative Forcing 

ESA European Space Agency  

EUMETSAT European Organization for the Exploitation of Meteorological Satellites 

FC Fully Connected 

FCN Fully Convolutional Network 

FN False Negatives 

FP False Positives 

GeLU Gaussian Error Linear Unit 

GEO  Geosynchronous Equatorial Orbit 

GOES-16 Geostationary Operational Environmental Satellites - 16 Series 

HSV Hue-Saturation-Value 

IoU Intersection over Union 

IR Infrared 

IRS Infrared Sensor 

ISSR Ice Super Saturated Regions 

LEO Low Earth Orbit 
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LSTM Long Short-Term Memory 

LWIR Long Wave Infrared   

mAP Mean Average Precision 

MaxViT Multi-Axis Vision Transformer 

MBConv Mobile Inverted Bottleneck Convolution 

MeCiDA Meteosat Second Generation Cirrus Detection Algorithm   

MHCA Multi-Head Convolutional Attention 

MSG Meteosat Second Generation 

MTG Meteosat Third Generation 

NextViT Next Generation Vision Transformer 

NCB Next Convolutional Block 

NIR Near Infrared  

NOAA National Oceanic and Atmospheric Administration 

NOx Nitrogen Oxides 

NTB Next Transformer Block 

R-CNN Region-based Convolutional Neural Network 

ReLU Rectified Linear Units 

ResNet Residual Network 

RHi Relative Humidity over ice  

RoI Region of Interest 

RGB Red, green and blue 

RPN Region Proposal Network 

SAC Schmidt-Appleman Criterion  

SEVERI Spinning Enhanced Visible and Infra-Red Imager  

SiLU Sigmoid Linear Unit 

SPPF Spatial Pyramid Pooling Fusion 

SWIR Short Wave Infrared  

TN True Negatives 

TP True Positives 

UT Universal Time 

VIS Visible 

YOLO You Only Look Once 

Table 1: List of acronyms 

 



D1.2 CONTRAIL TRACKING ALGORITHM 
 
 

   

  

Page | 91 
© –2024– SESAR 3 JU 

  
 

 

 

  

 
 


